spark

阶段性:

一、单机时代

特点:

1.硬件资源有限:单机系统的计算能力、存储容量和内存空间都受限于单台计算机的硬件配置。例如早期的个人电脑,通常只有几百兆的内存和几 GB 的硬盘空间。

2.数据处理能力有限:主要处理本地产生的小规模数据,数据量一般在 MB 级别到 GB 级别之间。如单机版的财务软件,只处理一个小型企业内部的少量财务数据。

3.应用场景简单:主要用于个人办公、简单的游戏娱乐或小型企业的基本业务处理,如文字处理、单机游戏、简单的库存管理等。

局限性:

1.无法处理大规模数据:随着业务的发展和数据量的增长,单机系统很快就会遇到存储和处理能力的瓶颈,无法应对海量数据的存储和分析需求。

2.可靠性和可用性较低:一旦单机出现故障,整个系统就会瘫痪,导致业务中断,数据也可能丢失,没有冗余机制来保证数据的安全和业务的连续性。

3.扩展性差:难以通过简单的方式增加计算和存储资源来满足不断增长的业务需求,升级硬件往往受到兼容性等多种因素的限制。

二、大数据时代-分布式处理

定义:是将一个大型的计算任务或数据处理任务分解成多个子任务,然后分配到多个计算节点(如多台服务器)上进行并行处理,最后将各个子任务的处理结果汇总得到最终结果的过程。

特点:提高处理能力:通过将任务分散到多个节点上并行计算,能够大大提高数据处理的速度和效率,从而可以在短时间内处理海量数据,满足大数据时代对数据处理的实时性和高效性要求。

三、实时大数据时代

hadoop慢因为它的计算结果保存在磁盘将其处理在spark中可解决计算慢的问题因为spark将计算结果保存在内存中

hadoop特点:1.高可靠性 2.高拓展性 3.高效性 4.高容错性

相关推荐
鸿乃江边鸟4 小时前
Spark Datafusion Comet 向量化Rust Native--CometShuffleExchangeExec怎么控制读写
大数据·rust·spark·native
伟大的大威1 天前
NVIDIA DGX Spark (ARM64/Blackwell) Kubernetes 集群 + GPU Operator 完整部署指南
大数据·spark·kubernetes
小邓睡不饱耶1 天前
深度实战:Spark GraphX构建用户信任网络,精准锁定高价值目标用户(含完整案例)
大数据·spark·php
B站计算机毕业设计超人1 天前
计算机毕业设计hadoop+spark+hive共享单车预测系统 共享单车数据可视化分析 大数据毕业设计(源码+LW文档+PPT+讲解)
大数据·hadoop·python·深度学习·spark·毕业设计·课程设计
B站计算机毕业设计超人1 天前
计算机毕业设计Python+Spark+Hadoop+Hive微博舆情分析 微博情感分析可视化 大数据毕业设计(源码+LW文档+PPT+讲解)
大数据·hadoop·爬虫·python·spark·cnn·课程设计
yumgpkpm1 天前
华为昇腾300T A2训练、微调Qwen过程,带保姆式命令,麒麟操作系统+鲲鹏CPU
hive·hadoop·华为·flink·spark·kafka·hbase
TTBIGDATA1 天前
【Hue】Ambari开启 Kerberos 后,Hue 使用 Spark SQL出现凭证不统一问题处理
大数据·sql·spark·ambari·kerberos·hue·bigtop
鸿乃江边鸟2 天前
Spark Datafusion Comet 向量化Rust Native--Native算子(CometNativeExec)怎么串联执行
大数据·rust·spark·native
Light602 天前
数智孪生,金流·物流全透视:构建某银行制造业贷后风控新范式—— 基于领码 SPARK 融合平台的技术解决方案
大数据·spark·数字孪生·实时监控·物联网金融·供应链风控·ai决策
小邓睡不饱耶2 天前
基于Spark GraphX构建用户信任网络:精准定位高价值目标用户
大数据·spark·php