ABP vNext + Spark on Hadoop:实时流处理与微服务融合

🚀 ABP vNext + Spark on Hadoop:实时流处理与微服务融合 🎉


📚 目录

  • [🚀 ABP vNext + Spark on Hadoop:实时流处理与微服务融合 🎉](#🚀 ABP vNext + Spark on Hadoop:实时流处理与微服务融合 🎉)
    • [环境准备与依赖 🛠️](#环境准备与依赖 🛠️)
    • [架构设计概览 🌐](#架构设计概览 🌐)
    • [Spark 作业构建与资源调度 ⚡](#Spark 作业构建与资源调度 ⚡)
    • [ABP vNext 实时推送集成 🚀](#ABP vNext 实时推送集成 🚀)
    • [容错与状态恢复机制 🔄](#容错与状态恢复机制 🔄)
      • [Delta Lake 持久化](#Delta Lake 持久化)
      • [Kafka 精准一次](#Kafka 精准一次)
    • [附录与扩展建议 📝](#附录与扩展建议 📝)
      • [Docker Compose 示例](#Docker Compose 示例)
      • [Kubernetes 部署(可选)](#Kubernetes 部署(可选))
      • 故障排查清单

环境准备与依赖 🛠️

在开始前,请确认以下环境与依赖已安装与配置:

  • Java:11(兼容 8)
  • Scala:2.12+
  • Spark:3.1.x+
  • Hadoop + YARN:3.x
  • Kafka:2.4+
  • .NET:6+
  • ABP vNext:5.x
  • SignalR Server
  • Delta Lake (1.2.x)或 Hudi(0.10.x)

环境校验示例

bash 复制代码
spark-shell --version
hadoop version
java -version
dotnet --version

安全提示:生产环境中的连接串、用户名和密码请通过环境变量或 Vault 管理,不要硬编码。


架构设计概览 🌐

系统总体流程

HTTP/gRPC REST/gRPC SignalR Client SparkDriver YarnRM NodeManager Executor Checkpoint & Output ABPService

  • 说明:该图展示了从客户端发起请求,到 Spark 在 YARN 上调度资源,再到 ABP 推送给前端的端到端链路。

Spark 作业构建与资源调度 ⚡

作业提交示例

bash 复制代码
spark-submit   --master yarn   --deploy-mode cluster   --driver-memory 4g   --executor-memory 4g   --executor-cores 2   --num-executors 6   --conf spark.dynamicAllocation.enabled=true   --conf spark.dynamicAllocation.minExecutors=2   --conf spark.dynamicAllocation.maxExecutors=20   --conf spark.dynamicAllocation.initialExecutors=4   --conf spark.shuffle.service.enabled=true   --conf spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension   --conf spark.sql.catalog.spark_catalog=org.apache.spark.sql.delta.catalog.DeltaCatalog   --packages io.delta:delta-core_2.12:1.2.1,org.apache.hudi:hudi-spark3.1-bundle_2.12:0.10.1   --class com.example.StreamingApp   streaming-app.jar

上述示例同时集成 Delta Lake 与 Hudi,避免版本冲突。 😊

参数调优参考

参数 建议值 说明
spark.dynamicAllocation.enabled true 开启动态分配
spark.dynamicAllocation.minExecutors 2 动态分配最小 Executor 数
spark.dynamicAllocation.maxExecutors 20 动态分配最大 Executor 数
spark.streaming.backpressure.enabled true 开启背压
spark.streaming.kafka.maxRatePerPartition 1000 限制每分区最大消费速率
spark.sql.shuffle.partitions 100 根据集群规模调整 shuffle 分区数
spark.streaming.stopGracefullyOnShutdown true 优雅退出,减少数据丢失

监控方案示意
Prometheus SparkDriver Grafana User expose JMX metrics scrape metrics dashboards Prometheus SparkDriver Grafana User


ABP vNext 实时推送集成 🚀

JWT 鉴权配置

csharp 复制代码
builder.Services.AddAuthentication(JwtBearerDefaults.AuthenticationScheme)
  .AddJwtBearer(options => {
    options.TokenValidationParameters = new TokenValidationParameters {
      ValidateIssuer = true,
      ValidIssuer = "https://your-issuer",
      ValidateAudience = true,
      ValidAudience = "your-audience",
      ValidateLifetime = true,
      IssuerSigningKey = new SymmetricSecurityKey(
        Encoding.UTF8.GetBytes("your-secret"))
    };
  });

幂等服务(Redis)

csharp 复制代码
var redis = ConnectionMultiplexer.Connect("redis-host:6379");
builder.Services.AddSingleton<IIdempotencyService>(
  new RedisIdempotencyService(redis.GetDatabase())
);

推送流程时序图

SparkJob ABPService Frontend Redis SignalR POST /api/stream/push Check Idempotency-Key Send to group ReceiveData 409 Conflict alt [not duplicate] [duplicate] SparkJob ABPService Frontend Redis SignalR


容错与状态恢复机制 🔄

Delta Lake 持久化

scala 复制代码
import org.apache.spark.sql.streaming.Trigger

df.writeStream
  .format("delta")
  .option("checkpointLocation", "/user/spark/checkpoints/streaming-app")
  .trigger(Trigger.ProcessingTime("5 seconds"))
  .start("/user/spark/output/stream")

Kafka 精准一次

scala 复制代码
df.selectExpr("CAST(key AS STRING)", "to_json(struct(*)) AS value")
  .writeStream
  .format("kafka")
  .option("kafka.bootstrap.servers", "broker1:9092,broker2:9092")
  .option("topic", "output-topic")
  .option("acks", "all")
  .option("kafka.transactional.id", "streaming-app-1")
  .option("kafka.enable.idempotence", "true")
  .option("checkpointLocation", "/user/spark/checkpoints/kafka-app")
  .start()

附录与扩展建议 📝

Docker Compose 示例

yaml 复制代码
version: '3.8'
services:
  namenode:
    image: your-hadoop:3.2
    environment: { ... }
  datanode:
    image: your-hadoop:3.2
  resourcemanager:
    image: your-hadoop:3.2
  nodemanager:
    image: your-hadoop:3.2
  spark:
    image: bitnami/spark:3.1
    depends_on: [namenode, resourcemanager]
  kafka:
    image: confluentinc/cp-kafka:6.2
    depends_on: [zookeeper]
  zookeeper:
    image: zookeeper:3.7

Kubernetes 部署(可选)

  • 推荐使用 Spark Operator 或 Helm Chart
  • 配置 spark.kubernetes.namespacespark.kubernetes.executor.label 做资源隔离

故障排查清单

  • Checkpoint 权限:检查 HDFS 路径读写权限
  • Kafka 认证 :确认 sasl.jaas.configssl.keystore.location
  • YARN 资源不足:检查队列配额与 NodeManager 状态

相关推荐
向上的车轮2 小时前
为什么.NET(C#)转 Java 开发时常常在“吐槽”Java:checked exception
java·c#·.net
波波0073 小时前
每日一题:.NET 的 GC是如何分代工作的?
算法·.net·gc
鸿乃江边鸟4 小时前
Spark Datafusion Comet 向量化Rust Native--CometShuffleExchangeExec怎么控制读写
大数据·rust·spark·native
像少年啦飞驰点、4 小时前
从零开始学 RabbitMQ:小白也能懂的消息队列实战指南
java·spring boot·微服务·消息队列·rabbitmq·异步编程
深圳行云创新5 小时前
微服务架构引入 AI 后,怎么统一研发和运维的标准规范?
人工智能·微服务·架构
是阿楷啊5 小时前
Java大厂面试场景:音视频场景中的Spring Boot与微服务实战
spring boot·redis·spring cloud·微服务·grafana·prometheus·java面试
天才奇男子14 小时前
HAProxy高级功能全解析
linux·运维·服务器·微服务·云原生
凯子坚持 c20 小时前
C++基于微服务脚手架的视频点播系统---客户端(4)
数据库·c++·微服务
老百姓懂点AI20 小时前
[微服务] Istio流量治理:智能体来了(西南总部)AI调度官的熔断策略与AI agent指挥官的混沌工程
人工智能·微服务·istio
JZC_xiaozhong1 天前
多系统权限标准不统一?企业如何实现跨平台统一权限管控
java·大数据·微服务·数据集成与应用集成·iam系统·权限治理·统一权限管理