🚀 ABP vNext + Spark on Hadoop:实时流处理与微服务融合 🎉
📚 目录
- [🚀 ABP vNext + Spark on Hadoop:实时流处理与微服务融合 🎉](#🚀 ABP vNext + Spark on Hadoop:实时流处理与微服务融合 🎉)
-
- [环境准备与依赖 🛠️](#环境准备与依赖 🛠️)
- [架构设计概览 🌐](#架构设计概览 🌐)
- [Spark 作业构建与资源调度 ⚡](#Spark 作业构建与资源调度 ⚡)
- [ABP vNext 实时推送集成 🚀](#ABP vNext 实时推送集成 🚀)
-
- [JWT 鉴权配置](#JWT 鉴权配置)
- 幂等服务(Redis)
- 推送流程时序图
- [容错与状态恢复机制 🔄](#容错与状态恢复机制 🔄)
-
- [Delta Lake 持久化](#Delta Lake 持久化)
- [Kafka 精准一次](#Kafka 精准一次)
- [附录与扩展建议 📝](#附录与扩展建议 📝)
-
- [Docker Compose 示例](#Docker Compose 示例)
- [Kubernetes 部署(可选)](#Kubernetes 部署(可选))
- 故障排查清单
环境准备与依赖 🛠️
在开始前,请确认以下环境与依赖已安装与配置:
- Java:11(兼容 8)
- Scala:2.12+
- Spark:3.1.x+
- Hadoop + YARN:3.x
- Kafka:2.4+
- .NET:6+
- ABP vNext:5.x
- SignalR Server
- Delta Lake (1.2.x)或 Hudi(0.10.x)
环境校验示例:
bash
spark-shell --version
hadoop version
java -version
dotnet --version
安全提示:生产环境中的连接串、用户名和密码请通过环境变量或 Vault 管理,不要硬编码。
架构设计概览 🌐
系统总体流程
HTTP/gRPC REST/gRPC SignalR Client SparkDriver YarnRM NodeManager Executor Checkpoint & Output ABPService
- 说明:该图展示了从客户端发起请求,到 Spark 在 YARN 上调度资源,再到 ABP 推送给前端的端到端链路。
Spark 作业构建与资源调度 ⚡
作业提交示例
bash
spark-submit --master yarn --deploy-mode cluster --driver-memory 4g --executor-memory 4g --executor-cores 2 --num-executors 6 --conf spark.dynamicAllocation.enabled=true --conf spark.dynamicAllocation.minExecutors=2 --conf spark.dynamicAllocation.maxExecutors=20 --conf spark.dynamicAllocation.initialExecutors=4 --conf spark.shuffle.service.enabled=true --conf spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension --conf spark.sql.catalog.spark_catalog=org.apache.spark.sql.delta.catalog.DeltaCatalog --packages io.delta:delta-core_2.12:1.2.1,org.apache.hudi:hudi-spark3.1-bundle_2.12:0.10.1 --class com.example.StreamingApp streaming-app.jar
上述示例同时集成 Delta Lake 与 Hudi,避免版本冲突。 😊
参数调优参考
参数 | 建议值 | 说明 |
---|---|---|
spark.dynamicAllocation.enabled | true | 开启动态分配 |
spark.dynamicAllocation.minExecutors | 2 | 动态分配最小 Executor 数 |
spark.dynamicAllocation.maxExecutors | 20 | 动态分配最大 Executor 数 |
spark.streaming.backpressure.enabled | true | 开启背压 |
spark.streaming.kafka.maxRatePerPartition | 1000 | 限制每分区最大消费速率 |
spark.sql.shuffle.partitions | 100 | 根据集群规模调整 shuffle 分区数 |
spark.streaming.stopGracefullyOnShutdown | true | 优雅退出,减少数据丢失 |
监控方案示意:
Prometheus SparkDriver Grafana User expose JMX metrics scrape metrics dashboards Prometheus SparkDriver Grafana User
ABP vNext 实时推送集成 🚀
JWT 鉴权配置
csharp
builder.Services.AddAuthentication(JwtBearerDefaults.AuthenticationScheme)
.AddJwtBearer(options => {
options.TokenValidationParameters = new TokenValidationParameters {
ValidateIssuer = true,
ValidIssuer = "https://your-issuer",
ValidateAudience = true,
ValidAudience = "your-audience",
ValidateLifetime = true,
IssuerSigningKey = new SymmetricSecurityKey(
Encoding.UTF8.GetBytes("your-secret"))
};
});
幂等服务(Redis)
csharp
var redis = ConnectionMultiplexer.Connect("redis-host:6379");
builder.Services.AddSingleton<IIdempotencyService>(
new RedisIdempotencyService(redis.GetDatabase())
);
推送流程时序图
SparkJob ABPService Frontend Redis SignalR POST /api/stream/push Check Idempotency-Key Send to group ReceiveData 409 Conflict alt [not duplicate] [duplicate] SparkJob ABPService Frontend Redis SignalR
容错与状态恢复机制 🔄
Delta Lake 持久化
scala
import org.apache.spark.sql.streaming.Trigger
df.writeStream
.format("delta")
.option("checkpointLocation", "/user/spark/checkpoints/streaming-app")
.trigger(Trigger.ProcessingTime("5 seconds"))
.start("/user/spark/output/stream")
Kafka 精准一次
scala
df.selectExpr("CAST(key AS STRING)", "to_json(struct(*)) AS value")
.writeStream
.format("kafka")
.option("kafka.bootstrap.servers", "broker1:9092,broker2:9092")
.option("topic", "output-topic")
.option("acks", "all")
.option("kafka.transactional.id", "streaming-app-1")
.option("kafka.enable.idempotence", "true")
.option("checkpointLocation", "/user/spark/checkpoints/kafka-app")
.start()
附录与扩展建议 📝
Docker Compose 示例
yaml
version: '3.8'
services:
namenode:
image: your-hadoop:3.2
environment: { ... }
datanode:
image: your-hadoop:3.2
resourcemanager:
image: your-hadoop:3.2
nodemanager:
image: your-hadoop:3.2
spark:
image: bitnami/spark:3.1
depends_on: [namenode, resourcemanager]
kafka:
image: confluentinc/cp-kafka:6.2
depends_on: [zookeeper]
zookeeper:
image: zookeeper:3.7
Kubernetes 部署(可选)
- 推荐使用 Spark Operator 或 Helm Chart
- 配置
spark.kubernetes.namespace
、spark.kubernetes.executor.label
做资源隔离
故障排查清单
- Checkpoint 权限:检查 HDFS 路径读写权限
- Kafka 认证 :确认
sasl.jaas.config
与ssl.keystore.location
- YARN 资源不足:检查队列配额与 NodeManager 状态