什么容错性以及Spark Streaming如何保证容错性

一、容错性的定义

容错性是指一个系统在发生故障或崩溃时,能够继续运行并提供一定服务的能力。在网络或系统中,这通常涉及到物理组件损坏或软件失败时系统的持续运行能力。容错系统的关键特性包括负载平衡、集群、冗余、复制和故障转移等。

二、Spark Streaming保证容错性的方法

Spark Streaming为了保证数据的准确性和系统的可靠性,实现了多种容错机制,主要包括以下几个方面:

  1. 元数据的容错性

    • Spark Streaming通过将流式计算的元数据(如批次信息)持久化,以确保在失败时可以恢复这些元数据。
    • 元数据checkpoint主要是为了从driver故障中恢复数据。
  2. 数据源的重放能力

    • Spark Streaming要求数据源支持数据重放功能,以便在任务失败后能够重新获取丢失的数据。
    • 对于一些文件的数据源,driver的恢复机制可以保证数据无丢失,因为所有的数据都保存在HDFS或S3上面。对于一些像Kafka、Flume等数据源,接收的数据保存在内存中将有可能丢失,这是因为Spark应用是分布式运行的,如果driver进程挂了,所有的executor进程将不可用,保存在这些进程所持有内存中的数据将会丢失。
    • 为了避免这些数据的丢失,Spark Streaming中引入了一个Write Ahead Logs(WAL)。WAL在文件系统和数据库中用于数据操作的持久化,先把数据写到一个持久化的日志中,然后对数据做操作。如果操作过程中系统挂了,恢复的时候可以重新读取日志文件再次进行操作。
  3. DAG(有向无环图)任务调度的重试机制

    • 类似于Spark批处理,Spark Streaming也依赖于Spark的DAG任务调度机制来实现任务的重试和容错。
    • 如果某个任务在Executor中失败,Spark调度器会根据失败的原因重新调度该任务。默认情况下,Spark会尝试重试4次(可以通过spark.task.maxFailures参数配置)。
  4. Checkpointing机制

    • Checkpointing用于存储批次的元数据和应用状态,以便在故障后能够恢复处理流程。
    • 元数据的checkpoint:用于保存每个微批次的处理信息(如偏移量和任务状态)。
    • 应用状态的checkpoint:当应用使用有状态操作(如updateStateByKey)时,状态也会被持久化到checkpoint中。
    • 数据checkpoint能节省RDD恢复性能,保存生成的RDD信息到可靠的存储系统中,这在有状态transformation(如结合跨多个批次的数据)中是必须的。

综上所述,Spark Streaming通过元数据的持久化、数据源的重放能力、DAG任务调度的重试机制以及Checkpointing机制等多种容错机制来确保系统的稳定性和数据的准确性。

相关推荐
BYSJMG4 分钟前
计算机毕业设计选题推荐:基于Hadoop的城市交通数据可视化系统
大数据·vue.js·hadoop·分布式·后端·信息可视化·课程设计
BYSJMG13 分钟前
Python毕业设计选题推荐:基于大数据的美食数据分析与可视化系统实战
大数据·vue.js·后端·python·数据分析·课程设计·美食
阿珍爱上了阿强2.017 分钟前
Elasticsearch 实战:客户数据索引设计与精准筛选查询实践
大数据·elasticsearch·搜索引擎
一只大袋鼠25 分钟前
分布式 ID 生成:雪花算法原理、实现与 MyBatis-Plus 实战
分布式·算法·mybatis
ba_pi31 分钟前
每天写点什么2026-02-2(1.5)数字化转型和元宇宙
大数据·人工智能
小W与影刀RPA1 小时前
【影刀RPA】:智能过滤敏感词,高效输出表格
大数据·人工智能·python·低代码·自动化·rpa·影刀rpa
远方16091 小时前
112-Oracle database 26ai下载和安装环境准备
大数据·数据库·sql·oracle·database
三水不滴1 小时前
对比一下RabbitMQ和RocketMQ
经验分享·笔记·分布式·rabbitmq·rocketmq
麦兜*1 小时前
深入解析分布式数据库TiDB核心架构:基于Raft一致性协议与HTAP混合负载实现金融级高可用与实时分析的工程实践
数据库·分布式·tidb
2501_947908201 小时前
范建峰携手安盛投资 助力普惠金融惠及更多民生领域
大数据·人工智能·金融