import numpy as np
class Tensor(object):
def __init__(self, data,
autograd=False,
creators=None,
creation_op=None,
id=None):
self.data = np.array(data)
self.autograd = autograd
self.grad = None
if (id is None):
self.id = np.random.randint(0, 100000)
else:
self.id = id
self.creators = creators
self.creation_op = creation_op
self.children = {}
if(creators is not None):
for c in creators:
if(self.id not in c.children):
c.children[self.id] = 1
else:
c.children[self.id] += 1
def all_children_grads_accounted_for(self):
for id, cnt in self.children.items():
if (cnt != 0):
return False
return True
def backward(self, grad=None, grad_origin=None):
if (self.autograd):
if (grad is None):
grad = FloatTensor(np.ones_like(self.data))
if (grad_origin is not None):
if (self.children[grad_origin.id] == 0):
raise Exception("cannot backprop more than once")
else:
self.children[grad_origin.id] -= 1
if (self.grad is None):
self.grad = grad
else:
self.grad += grad
# grads must not have grads of their own
assert grad.autograd == False
# only continue backpropping if there's something to
# backprop into and if all gradients (from children)
# are accounted for override waiting for children if
# "backprop" was called on this variable directly
if (self.creators is not None and
(self.all_children_grads_accounted_for() or
grad_origin is None)):
if (self.creation_op == "add"):
self.creators[0].backward(self.grad, self)
self.creators[1].backward(self.grad, self)
def __add__(self, other):
if (self.autograd and other.autograd):
return Tensor(self.data + other.data,
autograd=True,
creators=[self, other],
creation_op="add")
return Tensor(self.data + other.data)
def __repr__(self):
return str(self.data.__repr__())
def __str__(self):
return str(self.data.__str__())
a = Tensor([1, 2, 3, 4, 5], autograd=True)
b = Tensor([2, 2, 2, 2, 2], autograd=True)
c = Tensor([5, 4, 3, 2, 1], autograd=True)
d = a + b
e = b + c
f = d + e
f.backward(Tensor(np.array([1, 1, 1, 1, 1])))
print(b.grad.data == np.array([2, 2, 2, 2, 2]))
38、深度学习-自学之路-自己搭建深度学习框架-3、自动梯度计算改进
小宇爱2025-02-22 19:02
相关推荐
AI工具指南14 小时前
实测教程:三种主流AI生成PPT工作流详解DO_Community14 小时前
技术解码:Character.ai 如何实现大模型实时推理性能 2 倍提升Kakaxiii14 小时前
【2024ACL】Mind Map :知识图谱激发大型语言模型中的思维图谱leo__52014 小时前
基于A星算法的MATLAB路径规划实现AAD5558889914 小时前
基于YOLO11的自然景观多类别目标检测系统 山脉海洋湖泊森林建筑物桥梁道路农田沙漠海滩等多种景观元素检测识别数据分享者14 小时前
新闻文本智能识别数据集:40587条高质量标注数据推动自然语言处理技术发展-新闻信息提取、舆情分析、媒体内容理解-机器学习模型训练-智能分类系统___波子 Pro Max.14 小时前
LLM大语言模型定义与核心特征解析LDG_AGI15 小时前
【机器学习】深度学习推荐系统(三十):X 推荐算法Phoenix rerank机制厦门小杨15 小时前
汽车内饰的面料究竟如何依靠AI验布机实现检测创新devnullcoffee15 小时前
2026年Amazon Listing优化完全指南:COSMO算法与Rufus AI技术解析