【AI时代】可视化训练模型工具LLaMA-Factory安装与使用

文章目录

安装

官方地址:https://github.com/hiyouga/LLaMA-Factory

创建虚拟环境

bash 复制代码
conda create -n llama-factory
conda activate llama-factory

安装

bash 复制代码
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"

检查

完成安装后,可以通过使用llamafactory-cli来快速校验安装是否成功

如果您能成功看到类似下面的界面,就说明安装成功了。

启动webui

bash 复制代码
nohup llamafactory-cli webui > output.log 2>&1 &

启动后访问该地址:

训练

简单在页面设置一下参数

模型路径:可以使用huggingface的路径,也可以直接配置本地的路径;大部分参数使用默认的即可。

自定义数据集需要在该文件中进行配置,页面才可见:

配置好之后,点击预览命令,展示训练命令:

bash 复制代码
llamafactory-cli train \
    --stage sft \
    --do_train True \
    --model_name_or_path /mnt/largeroom/llm/model/DeepSeek-R1-Distill-Qwen-1.5B \
    --preprocessing_num_workers 16 \
    --finetuning_type lora \
    --template deepseek3 \
    --flash_attn auto \
    --dataset_dir data \
    --dataset alpaca_zh_demo \
    --cutoff_len 2048 \
    --learning_rate 5e-05 \
    --num_train_epochs 3.0 \
    --max_samples 1000000 \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 8 \
    --lr_scheduler_type cosine \
    --max_grad_norm 1.0 \
    --logging_steps 5 \
    --save_steps 100 \
    --warmup_steps 4 \
    --packing False \
    --report_to none \
    --output_dir saves/DeepSeek-R1-1.5B-Distill/lora/train_lora_02 \
    --bf16 True \
    --plot_loss True \
    --trust_remote_code True \
    --ddp_timeout 180000000 \
    --include_num_input_tokens_seen True \
    --optim adamw_torch \
    --lora_rank 16 \
    --lora_alpha 16 \
    --lora_dropout 0 \
    --lora_target all

可以看到我所有卡都用上了:

完成之后,会展示损失函数:

在输出目录可以看到微调好的权重:

使用

对于训练好的模型,如果是像上图这像的分开存储的权重,可以通过配置检查点路径进行调用

需要提前安装vllm:

yaml 复制代码
pip install vllm==0.7.2

如果安装慢,网络连接不上,可以使用-i指定源:

yaml 复制代码
 pip install vllm==0.7.2 -i https://pypi.tuna.tsinghua.edu.cn/simple/

常用的国内源:

plain 复制代码
阿里云:https://mirrors.aliyun.com/pypi/simple/
豆瓣:https://pypi.douban.com/simple/
清华大学:https://pypi.tuna.tsinghua.edu.cn/simple/
中国科学技术大学:https://pypi.mirrors.ustc.edu.cn/simple/

也可以通过 <font style="color:rgb(0, 0, 0);">llamafactory-cli export merge_config.yaml</font> 指令来合并模型。

yaml 复制代码
### model
model_name_or_path: /mnt/largeroom/llm/model/DeepSeek-R1-Distill-Qwen-1.5B
adapter_name_or_path: /mnt/largeroom/zhurunhua/LLaMA-Factory/saves/DeepSeek-R1-1.5B-Distill/lora/train_lora_02
template: deepseek3
finetuning_type: lora

### export
export_dir: /mnt/largeroom/llm/model/deepseek-r1-1.5b-peft
export_size: 2
export_device: cpu
export_legacy_format: false
相关推荐
2501_941982052 分钟前
结合 AI 视觉:使用 OCR 识别企业微信聊天记录中的图片信息
人工智能·ocr·企业微信
事变天下18 分钟前
肾尚科技完成新一轮融资,加速慢性肾脏病(CKD)精准化管理闭环渗透
大数据·人工智能
GEO AI搜索优化助手19 分钟前
范式革命——从“关键词”到“意图理解”,搜索本质的演进与重构
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
大刘讲IT21 分钟前
2025年企业级 AI Agent 标准化落地深度年度总结:从“对话”到“端到端价值闭环”的范式重构
大数据·人工智能·程序人生·ai·重构·制造
2301_8234380228 分钟前
【无标题】解析《采用非对称自玩实现强健多机器人群集的深度强化学习方法》
数据库·人工智能·算法
沛沛老爹30 分钟前
Web开发者快速上手AI Agent:提示词应用优化实战
人工智能·ai·agent·提示词·rag·入门知识
中国胖子风清扬32 分钟前
SpringAI和 Langchain4j等 AI 框架之间的差异和开发经验
java·数据库·人工智能·spring boot·spring cloud·ai·langchain
Dev7z36 分钟前
基于Stanley算法的自动驾驶车辆路径跟踪控制研究
人工智能·机器学习·自动驾驶
Java后端的Ai之路42 分钟前
【分析式AI】-过拟合(含生活案例说明)
人工智能·aigc·生活·过拟合·分析式ai
企业智能研究42 分钟前
数据分析Agent白皮书:揭秘Data x AI的底层逻辑与未来关键
大数据·人工智能·数据分析