【AI时代】可视化训练模型工具LLaMA-Factory安装与使用

文章目录

安装

官方地址:https://github.com/hiyouga/LLaMA-Factory

创建虚拟环境

bash 复制代码
conda create -n llama-factory
conda activate llama-factory

安装

bash 复制代码
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"

检查

完成安装后,可以通过使用llamafactory-cli来快速校验安装是否成功

如果您能成功看到类似下面的界面,就说明安装成功了。

启动webui

bash 复制代码
nohup llamafactory-cli webui > output.log 2>&1 &

启动后访问该地址:

训练

简单在页面设置一下参数

模型路径:可以使用huggingface的路径,也可以直接配置本地的路径;大部分参数使用默认的即可。

自定义数据集需要在该文件中进行配置,页面才可见:

配置好之后,点击预览命令,展示训练命令:

bash 复制代码
llamafactory-cli train \
    --stage sft \
    --do_train True \
    --model_name_or_path /mnt/largeroom/llm/model/DeepSeek-R1-Distill-Qwen-1.5B \
    --preprocessing_num_workers 16 \
    --finetuning_type lora \
    --template deepseek3 \
    --flash_attn auto \
    --dataset_dir data \
    --dataset alpaca_zh_demo \
    --cutoff_len 2048 \
    --learning_rate 5e-05 \
    --num_train_epochs 3.0 \
    --max_samples 1000000 \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 8 \
    --lr_scheduler_type cosine \
    --max_grad_norm 1.0 \
    --logging_steps 5 \
    --save_steps 100 \
    --warmup_steps 4 \
    --packing False \
    --report_to none \
    --output_dir saves/DeepSeek-R1-1.5B-Distill/lora/train_lora_02 \
    --bf16 True \
    --plot_loss True \
    --trust_remote_code True \
    --ddp_timeout 180000000 \
    --include_num_input_tokens_seen True \
    --optim adamw_torch \
    --lora_rank 16 \
    --lora_alpha 16 \
    --lora_dropout 0 \
    --lora_target all

可以看到我所有卡都用上了:

完成之后,会展示损失函数:

在输出目录可以看到微调好的权重:

使用

对于训练好的模型,如果是像上图这像的分开存储的权重,可以通过配置检查点路径进行调用

需要提前安装vllm:

yaml 复制代码
pip install vllm==0.7.2

如果安装慢,网络连接不上,可以使用-i指定源:

yaml 复制代码
 pip install vllm==0.7.2 -i https://pypi.tuna.tsinghua.edu.cn/simple/

常用的国内源:

plain 复制代码
阿里云:https://mirrors.aliyun.com/pypi/simple/
豆瓣:https://pypi.douban.com/simple/
清华大学:https://pypi.tuna.tsinghua.edu.cn/simple/
中国科学技术大学:https://pypi.mirrors.ustc.edu.cn/simple/

也可以通过 <font style="color:rgb(0, 0, 0);">llamafactory-cli export merge_config.yaml</font> 指令来合并模型。

yaml 复制代码
### model
model_name_or_path: /mnt/largeroom/llm/model/DeepSeek-R1-Distill-Qwen-1.5B
adapter_name_or_path: /mnt/largeroom/zhurunhua/LLaMA-Factory/saves/DeepSeek-R1-1.5B-Distill/lora/train_lora_02
template: deepseek3
finetuning_type: lora

### export
export_dir: /mnt/largeroom/llm/model/deepseek-r1-1.5b-peft
export_size: 2
export_device: cpu
export_legacy_format: false
相关推荐
LCG元17 分钟前
大模型驱动的围术期质控系统全面解析与应用探索
人工智能
lihuayong29 分钟前
计算机视觉:主流数据集整理
人工智能·计算机视觉·mnist数据集·coco数据集·图像数据集·cifar-10数据集·imagenet数据集
政安晨38 分钟前
政安晨【零基础玩转各类开源AI项目】DeepSeek 多模态大模型Janus-Pro-7B,本地部署!支持图像识别和图像生成
人工智能·大模型·多模态·deepseek·janus-pro-7b
一ge科研小菜鸡43 分钟前
DeepSeek 与后端开发:AI 赋能云端架构与智能化服务
人工智能·云原生
冰 河1 小时前
‌最新版DeepSeek保姆级安装教程:本地部署+避坑指南
人工智能·程序员·openai·deepseek·冰河大模型
维维180-3121-14551 小时前
AI赋能生态学暨“ChatGPT+”多技术融合在生态系统服务中的实践技术应用与论文撰写
人工智能·chatgpt
終不似少年遊*1 小时前
词向量与词嵌入
人工智能·深度学习·nlp·机器翻译·词嵌入
杜大哥1 小时前
如何在WPS打开的word、excel文件中,使用AI?
人工智能·word·excel·wps
Leiditech__1 小时前
人工智能时代电子机器人静电问题及电路设计防范措施
人工智能·嵌入式硬件·机器人·硬件工程
谨慎谦虚2 小时前
Trae 体验:探索被忽视的 Chat 模式
人工智能·trae