Web攻防-大模型应用&LLM安全&提示词注入&不安全输出&代码注入&直接间接&数据投毒

知识点:

1、WEB攻防-LLM安全-API接口安全&代码注入

2、WEB攻防-LLM安全-提示词注入&不安全输出

Web LLM(Large Language Model)攻击指针对部署在Web端的AI大语言模型的攻击行为。攻击者通过恶意提示词注入、训练数据窃取、模型逆向工程等手段,操控AI输出敏感信息或执行危险操作。

复盘文章
https://mp.weixin.qq.com/s/6SVInWxwJ34ucjqNYPp3fw
https://mp.weixin.qq.com/s/CbJf3Tr9sy8U1r0T5xv1yg

一、演示案例: WEB攻防-LLM安全-API接口安全&代码注入

1、API接口使用

利用已知的API接口完成RCE操作




2、远程通讯利用

关注到有利用的远程调用,尝试写入管道命令等,是否会带出

二、演示案例: WEB攻防-LLM安全-提示词注入&不安全输出

1、提示词注入

Prompt Injection漏洞是指攻击者通过精心设计的输入操纵大型语言模型(LLM),导致LLM无意中执行攻击者的意图。这种攻击可以是直接的,例如通过"越狱"系统提示;也可以是间接的,通过操纵外部输入来实现。成功的提示注入攻击可能导致数据泄露、社会工程攻击等多种后果。








直接方式(Directly)

譬如直接通过向聊天机器人发送想问的信息,问什么聊天机器人就回答什么,没有任何限制。

项目:https://github.com/kk12-30/LLMs-PromptAttacks

间接提示注入








提示词注入靶场

https://gandalf.lakera.ai/


可以利用这个项目进行绕过:https://github.com/kk12-30/LLMs-PromptAttacks



参考:https://mp.weixin.qq.com/s/sT9TxOR7jC5U4tHPRFT9WQ

2、不安全的输出处理

不安全的输出处理指的是在将LLM生成的输出传递给下游组件和系统之前,对其进行的验证、清理和处理不足。这可能导致跨站脚本攻击(XSS)、服务器端请求伪造(SSRF)等严重后果。

bash 复制代码
"<img src=1 onerror=alert(1)>"



相关推荐
mwq3012311 小时前
Cursor Tab 共享无限车
llm
喜欢吃豆12 小时前
使用 OpenAI Responses API 构建生产级应用的终极指南—— 状态、流式、异步与文件处理
网络·人工智能·自然语言处理·大模型
AI大模型12 小时前
RAG不会过时,但你需要这10个上下文处理技巧丨Context Engineering
程序员·llm·agent
AI大模型12 小时前
万人收藏的提示词工程指导白皮书(附中文版)!Google官方出品,看完整个人都通透了
程序员·llm·agent
Baihai_IDP14 小时前
剖析大模型产生幻觉的三大根源
人工智能·面试·llm
EdisonZhou14 小时前
MAF快速入门(3)聊天记录持久化到数据库
llm·aigc·agent·.net core
在未来等你1 天前
AI Agent设计模式 Day 19:Feedback-Loop模式:反馈循环与自我优化
设计模式·llm·react·ai agent·plan-and-execute
沛沛老爹1 天前
AI应用入门之LangChain中SerpAPI、LLM-Math等Tools的集成方法实践
人工智能·langchain·llm·ai入门·serpapi
楚国的小隐士1 天前
Qwen是“源神”?实际上GLM-4.6才是被低估的黑马
ai·大模型·通义千问·智谱清言
智泊AI1 天前
AI大模型基础概念扫盲篇:Agent、Token、MoE、RAG、Embedding、对齐、Transformer、预训练、微调
llm