【分治法】线性时间选择问题

问题描述

给定线性序列中n个元素和一个整数k,1≤k≤n,要求在线性时间中找出这n个元素中第k小的元素

常规思路

常规思路是对序列先排序,落在第k个位置的元素就是第k小的元素。

这种方法的时间复杂度不是线性的,是O(nlogn)的时间复杂度,使用快排极端情况下甚至会出现O(n^2)的时间复杂度。问题需要在O(n)的时间内完成,故而这种方法不可行

快速排序的时间复杂度可以看这篇文章的最后

分治法解决

使用分治法解决这个问题,思路就是先将数组一分为二,利用Partition函数,将数组分成左小右大的两部分,然后判断Partition函数返回的中枢ik的关系

  • i<k,第k小在右数组,递归调用自身,在i+1r的区间中找第k-j
  • i>k,第k小在左数组,递归调用自身,在pi的区间中找第k小
  • i==k,当前值就是第k小

递归边界是p=r时,数组只有一个元素,第一小第k小都是该元素

代码

c 复制代码
Type RandomizedSelect(Type a[], int p, int r, int k) {
	if (p == r)
		return a[p];
	i = RandomizedPartition(a, p, r);
	j = i - p + 1;
	if (k == j)
		return a[i];
	else if (k < j)
		return RandomizedSelect(a, p, i, k);
	else
		return RandomizedSelect(a, i + 1, r, k - j);
}
c 复制代码
Type RandomizedPartition(Type a[], int p, int r) {
	i = Random(p, r);//用于生成p到r的随机数
	swap(a[i], a[p]);//交换a[i]和a[p]
	return Partition(a, p, r);
}

关于Partition算法,可以看这篇文章中的介绍

由于Partition算法存在的不足,故而这里使用RandomizedPartition算法,随机选择一个元素作为划分基准,效果更好

算法分析

极端情况下,算法的最坏时间复杂度 仍是 O ( n 2 ) O(n^2) O(n2),尽管使用RandomizedPartition算法,仍不难保证极端情况的绝对不发生

但可以证明,算法的平均时间复杂度 是 O ( n ) O(n) O(n)的

分治策略相关问题
循环赛日程表问题
快速排序中的分治策略
棋盘覆盖问题
快速幂算法

相关推荐
<但凡.2 小时前
C++修炼:list模拟实现
开发语言·数据结构·c++
songx_992 小时前
算法设计与分析7(贪心算法)
算法
aigonna2 小时前
Kimi 7B 语音转文字
算法
敲代码的瓦龙2 小时前
C++?动态内存管理!!!
c语言·开发语言·数据结构·c++·后端
Ronin3053 小时前
【C++】13.list的模拟实现
开发语言·数据结构·c++·list
weixin_435208163 小时前
图解模型并行框架
人工智能·算法·语言模型·自然语言处理·aigc
序属秋秋秋3 小时前
《数据结构初阶》【顺序表 + 单链表 + 双向链表】
c语言·数据结构·笔记·链表
东方翱翔3 小时前
第十六届蓝桥杯大赛软件赛省赛第二场 C/C++ 大学 A 组
算法·职场和发展·蓝桥杯
Blossom.1184 小时前
量子计算在密码学中的应用与挑战:重塑信息安全的未来
人工智能·深度学习·物联网·算法·密码学·量子计算·量子安全
无敌的牛4 小时前
AVL树的介绍与学习
数据结构·学习