基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

matlab2022a/matlab2024b

3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)

复制代码
.................................................................
figure;
plot(gb1,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('优化迭代次数');
ylabel('适应度值');


 
figure
plot(gb1,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');


 
X     = g1;
 
%bilstm
layers=bilstm_layer(bw_in,round(X(1)),round(X(2)),bw_out,X(3),X(4),X(5));

%参数设定
opts = trainingOptions('adam', ...
    'MaxEpochs',10, ...
    'GradientThreshold',1,...
    'ExecutionEnvironment','cpu',...
    'InitialLearnRate',X(6), ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropPeriod',2, ...   
    'LearnRateDropFactor',0.5, ...
    'Shuffle','once',...           
    'SequenceLength',1,...
    'MiniBatchSize',64,...
    'Verbose',1);

%网络训练
[net1,INFO] = trainNetwork(Xtrain,Ytrain,layers,opts);

Rmsev = INFO.TrainingRMSE;


figure;
plot(Rmsev)
xlabel('训练次数');
ylabel('RMSE');


%预测
for i = 1:length(Xtest)
    Ypred(i)  = net1.predict(Xtest(i));
end

figure
plot(Ypred,'r-')
hold on 
plot(Ytest','b-')
legend('预测值','实际值')
xlabel('时间(s)')
ylabel('负荷(KW)')

rmse = mean((Ypred(:)-Ytest(:)).^2);% 计算均方根误差

title(sprintf('PSO-biLSTM分析-RMSE=%.3f', rmse));

save R3.mat Ypred Ytest rmse Rmsev
208

4.算法理论概述

在序列预测问题中,如气象数据预测、交通流量预测等,准确捕捉序列中的长期依赖关系和上下文信息是关键。双向长短期记忆网络(BiLSTM)能有效处理长序列数据,同时考虑序列的过去和未来信息,但BiLSTM的性能受其参数设置的影响较大。粒子群优化算法(PSO)是一种基于群体智能的优化算法,具有全局搜索能力强、收敛速度快等优点。将PSO应用于BiLSTM的参数优化,可以提高BiLSTM的序列预测性能。

LSTM是一种特殊的循环神经网络(RNN),旨在解决传统 RNN 在处理长序列时的梯度消失和梯度爆炸问题,从而更好地捕捉长序列中的长期依赖关系。其核心结构包含输入门、遗忘门、输出门以及记忆单元。

BiLSTM 是在 LSTM 基础上发展而来,它通过同时向前和向后处理序列,能够更好地捕捉序列中的前后文信息,从而在序列预测任务中表现更优。BiLSTM 由一个前向 LSTM 和一个后向 LSTM 组成。

这种结构使得 BiLSTM 能够同时利用序列的前文和后文信息,在处理需要全局信息的序列预测任务时具有明显优势。

在本课题中,将pso应用于BiLSTM主要是为了优化BiLSTM的超参数,如学习率、隐藏层神经元数量等,以提升其预测性能。大致的步骤如下:

1.随机初始化一群粒子的位置和速度,每个粒子的位置对应一组 BiLSTM 的参数。

2.使用训练集对 BiLSTM 进行训练,并根据验证集的预测结果定义适应度函数。常见的适应度函数是均方误差(MSE):

3.PSO 迭代优化

PSO能够在参数空间中进行全局搜索,有助于找到更优的BiLSTM参数组合,避免陷入局部最优解。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
禅与计算机程序设计艺术1 分钟前
实现一个原生版本的 LangGraph 的 `create_agent` 功能,使用 Python 和通用的 LLM MaaS API
人工智能
恒点虚拟仿真9 分钟前
智能制造专业虚拟仿真实训平台:AI赋能个性化学习,提高实践技能
人工智能·智能制造·ai教学·ai+虚拟仿真·虚拟仿真实训平台·虚拟仿真平台·虚拟仿真教学平台
泰迪智能科技14 分钟前
分享|智能决策,精准增长:企业数据挖掘关键策略与应用全景
人工智能·数据挖掘
番茄撒旦在上14 分钟前
2.每日机器学习——张量(Tensors)
人工智能·机器学习
流烟默17 分钟前
机器学习中的 fit()、transform() 与 fit_transform():原理、用法与最佳实践
人工智能·机器学习·transform·fit
王中阳Go18 分钟前
8 - AI 服务化 - AI 超级智能体项目教程
人工智能
长桥夜波18 分钟前
【第二十周】机器学习笔记09
人工智能·笔记·机器学习
流烟默25 分钟前
基于Optuna 贝叶斯优化的自动化XGBoost 超参数调优器
人工智能·python·机器学习·超参数优化
饕餮怪程序猿31 分钟前
C++:大型语言模型与智能系统底座的隐形引擎
c++·人工智能
hzp6661 小时前
基于大语言模型(LLM)的多智能体应用的新型服务框架——Tokencake
人工智能·语言模型·大模型·llm·智能体·tokencake