基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

matlab2022a/matlab2024b

3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)

复制代码
.................................................................
figure;
plot(gb1,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('优化迭代次数');
ylabel('适应度值');


 
figure
plot(gb1,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');


 
X     = g1;
 
%bilstm
layers=bilstm_layer(bw_in,round(X(1)),round(X(2)),bw_out,X(3),X(4),X(5));

%参数设定
opts = trainingOptions('adam', ...
    'MaxEpochs',10, ...
    'GradientThreshold',1,...
    'ExecutionEnvironment','cpu',...
    'InitialLearnRate',X(6), ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropPeriod',2, ...   
    'LearnRateDropFactor',0.5, ...
    'Shuffle','once',...           
    'SequenceLength',1,...
    'MiniBatchSize',64,...
    'Verbose',1);

%网络训练
[net1,INFO] = trainNetwork(Xtrain,Ytrain,layers,opts);

Rmsev = INFO.TrainingRMSE;


figure;
plot(Rmsev)
xlabel('训练次数');
ylabel('RMSE');


%预测
for i = 1:length(Xtest)
    Ypred(i)  = net1.predict(Xtest(i));
end

figure
plot(Ypred,'r-')
hold on 
plot(Ytest','b-')
legend('预测值','实际值')
xlabel('时间(s)')
ylabel('负荷(KW)')

rmse = mean((Ypred(:)-Ytest(:)).^2);% 计算均方根误差

title(sprintf('PSO-biLSTM分析-RMSE=%.3f', rmse));

save R3.mat Ypred Ytest rmse Rmsev
208

4.算法理论概述

在序列预测问题中,如气象数据预测、交通流量预测等,准确捕捉序列中的长期依赖关系和上下文信息是关键。双向长短期记忆网络(BiLSTM)能有效处理长序列数据,同时考虑序列的过去和未来信息,但BiLSTM的性能受其参数设置的影响较大。粒子群优化算法(PSO)是一种基于群体智能的优化算法,具有全局搜索能力强、收敛速度快等优点。将PSO应用于BiLSTM的参数优化,可以提高BiLSTM的序列预测性能。

LSTM是一种特殊的循环神经网络(RNN),旨在解决传统 RNN 在处理长序列时的梯度消失和梯度爆炸问题,从而更好地捕捉长序列中的长期依赖关系。其核心结构包含输入门、遗忘门、输出门以及记忆单元。

BiLSTM 是在 LSTM 基础上发展而来,它通过同时向前和向后处理序列,能够更好地捕捉序列中的前后文信息,从而在序列预测任务中表现更优。BiLSTM 由一个前向 LSTM 和一个后向 LSTM 组成。

这种结构使得 BiLSTM 能够同时利用序列的前文和后文信息,在处理需要全局信息的序列预测任务时具有明显优势。

在本课题中,将pso应用于BiLSTM主要是为了优化BiLSTM的超参数,如学习率、隐藏层神经元数量等,以提升其预测性能。大致的步骤如下:

1.随机初始化一群粒子的位置和速度,每个粒子的位置对应一组 BiLSTM 的参数。

2.使用训练集对 BiLSTM 进行训练,并根据验证集的预测结果定义适应度函数。常见的适应度函数是均方误差(MSE):

3.PSO 迭代优化

PSO能够在参数空间中进行全局搜索,有助于找到更优的BiLSTM参数组合,避免陷入局部最优解。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
skywalk816318 小时前
在Windows10 Edge浏览器里安装DeepSider大模型插件来免费使用gpt-4o、NanoBanana等AI大模型
人工智能
汽车仪器仪表相关领域19 小时前
工业安全新利器:NHQT-4四合一检测线系统深度解析
网络·数据库·人工智能·安全·汽车·检测站·汽车检测
有Li19 小时前
基于神经控制微分方程的采集无关深度学习用于定量MRI参数估计|文献速递-文献分享
论文阅读·人工智能·文献·医学生
taxunjishu19 小时前
DeviceNet 转 Profinet:西门子 S7 - 1500 PLC 与欧姆龙伺服电机在汽车焊装生产线夹具快速切换定位的通讯配置案例
人工智能·区块链·工业物联网·工业自动化·profinet·devicenet·总线协议转换网关
脑极体20 小时前
华为,让金融智能体月映千江
人工智能·华为·金融
万俟淋曦21 小时前
【ROS2】通讯机制 Topic 常用命令行
人工智能·ai·机器人·ros·topic·ros2·具身智能
武汉唯众智创21 小时前
基于边缘计算的智能家居综合实训室设计方案
人工智能·智能家居·边缘计算·智能家居实训室·智能家居综合实训室·智能家居实验室·智能家居综合实验室
倔强青铜三21 小时前
苦练Python第52天:一口气吃透Python的“七脉神剑”:生命周期+字符串魔术方法全解析
人工智能·python·面试
RIDDLE!21 小时前
Python-OpenCV图像边缘检测算法全解析
人工智能·opencv·计算机视觉
格林威21 小时前
机器视觉选Halcon还是OpenCV?
人工智能·数码相机·opencv·yolo·计算机视觉·视觉检测·制造