Day9,Hot100(图论)

图论

图论部分推荐 acm 模式,因为图的输入处理不一样

DFS,类似二叉树的递归遍历

BFS,类似二叉树的层次遍历

208. 实现 Trie (前缀树)

数据结构大概如下:

  • 可以看成是 二十六叉树 (因为26个小写字母)
py 复制代码
class Node:
    def __init__(self):
        self.son = {}
        self.end = False  # end=True, 表示当前结点已经构成一个单词

class Trie:
    def __init__(self):
        self.root = Node()

    def insert(self, word: str) -> None:
        cur = self.root
        for c in word:
            if c not in cur.son:
                cur.son[c] = Node()
            cur = cur.son[c]
        cur.end = True

    def find(self, word: str) -> int:
        cur = self.root
        for c in word:
            if c not in cur.son:
                return 0
            cur = cur.son[c]
        return 2 if cur.end else 1

    def search(self, word: str) -> bool:
        return self.find(word) == 2

    def startsWith(self, prefix: str) -> bool:
        return self.find(prefix) != 0

DFS

(1)200. 岛屿数量

方法一:DFS

py 复制代码
class Solution:
    def numIslands(self, grid: List[List[str]]) -> int:
        dx = [0,-1,0,1]
        dy = [-1,0,1,0]

        def dfs(i, j):
            if (not 0 <= i < m) or (not 0 <= j < n) or grid[i][j] == '0':
                return

            grid[i][j] = '0'

            for idx in range(4):
                x = i + dx[idx]
                y = j + dy[idx]
                dfs(x,y)

        m = len(grid)
        n = len(grid[0])
        ans = 0 
        for i in range(m):
            for j in range(n):
                if grid[i][j] == "1":
                    dfs(i,j)  # 把整个岛都标记
                    ans += 1
        return ans

ACM 代码模式: 99. 岛屿数量

读取每一行输入map(int, input().split())

  • input().split(),将输入的行,按照空格切分每个元素,返回一个list
  • map(int, input().split()),将 list 中每个元素转化为指定的 int类型,返回一个可迭代的对象

例如输入1 2 3 4

  • input().split(),得到['1', '2', '3', '4']
  • list(map(int, input().split())),[1, 2, 3, 4]
py 复制代码
dx = [-1,0,1,0]
dy = [0,-1,0,1]

def dfs(i, j):
    if not (0<=i<n) or not (0<=j<m) or grid[i][j]==0:
        return 
    
    grid[i][j] = 0
    
    for idx in range(4):
        x = dx[idx] + i
        y = dy[idx] + j
        dfs(x, y)


if __name__ == '__main__':
    n,m = map(int, input().split())
    grid = []
    for i in range(n):
        grid.append(list(map(int, input().split())))
    
    # visited = [ [False] * m for _ in range(n) ]
    
    ans = 0
    
    for i in range(n):
        for j in range(m):
            if grid[i][j] == 1:
                dfs(i, j)
                ans += 1
    
    print(ans)

(2)100. 岛屿的最大面积

py 复制代码
dx = [-1, 0, 1, 0]
dy = [0, -1, 0, 1]
s = 0

def dfs(i, j):
    if not (0 <= i < n) or not (0 <= j < m) or grid[i][j] == 0:
        return

    global s
    s += 1
    grid[i][j] = 0
    for idx in range(4):
        x = dx[idx] + i
        y = dy[idx] + j
        dfs(x, y)


if __name__ == '__main__':
    n, m = map(int, input().split())
    grid = []
    for i in range(n):
        grid.append(list(map(int, input().split())))

    ans = 0

    for i in range(n):
        for j in range(m):
            if grid[i][j] == 1:
                s = 0
                dfs(i, j)
                ans = max(ans, s)
    print(ans)

(3)101. 孤岛的总面积


步骤

  • 首先把四周靠边界的岛屿都设为 0
  • 然后遍历剩余的孤岛面积
py 复制代码
dx = [-1,0,1,0]
dy = [0,-1,0,1]
s = 0

def dfs(i,j):
    if not (0<=i<n) or not (0<=j<m) or grid[i][j] == 0:
        return
    global s
    s += 1
    grid[i][j] = 0
    for idx in range(4):
        x = dx[idx] + i
        y = dy[idx] + j
        dfs(x,y)

if __name__ == '__main__':
    n, m = map(int, input().split())
    grid = []
    for i in range(n):
        grid.append(list(map(int, input().split())))

    # 将四周贴边的非孤岛区域转为水
    # 遍历第一列和最后一列
    for i in range(n):
        if grid[i][0] == 1:
            dfs(i,0)
        elif grid[i][m-1] == 1:
            dfs(i,m-1)

    # 遍历第一行和最后一行
    for j in range(m):
        if grid[0][j] == 1:
            dfs(0,j)
        elif grid[n-1][j] == 1:
            dfs(n-1,j)

    # 计算孤岛面积
    s = 0
    for i in range(n):
        for j in range(m):
            if grid[i][j] == 1:
                dfs(i,j)
    print(s)

(4)102. 沉没孤岛

  1. 把靠四周的非孤岛标记为2
  2. 接着把剩余的1(孤岛),标记为0
  3. 最后把2修改回1
py 复制代码
dx = [-1,0,1,0]
dy = [0,-1,0,1]

def dfs(i,j):
    if not (0 <= i < n) or not(0 <= j < m) or grid[i][j] != 1:
        return 
    
    grid[i][j] = 2
    
    for k in range(4):
        x = dx[k] + i
        y = dy[k] + j
        dfs(x,y)

if __name__ == '__main__':
    n,m = map(int, input().split())
    grid = []
    
    for _ in range(n):
        grid.append(list(map(int, input().split())))
    
    for i in range(n):
        if grid[i][0] == 1:
            dfs(i, 0)
        if grid[i][m-1] == 1:
            dfs(i, m-1)
    
    for j in range(m):
        if grid[0][j] == 1:
            dfs(0,j)
        if grid[n-1][j] == 1:
            dfs(n-1, j)
            
    for i in range(n):
        for j in range(m):
            if grid[i][j] == 1:
                grid[i][j] = 0
            elif grid[i][j] == 2:
                grid[i][j] = 1
        print(' '.join(map(str, grid[i])))

BFS

(1)994. 腐烂的橘子

使用 BFS 是为了实现,同一个时间,当前所有腐烂的橘子同时腐烂周围

py 复制代码
from collections import deque
class Solution:
    def orangesRotting(self, grid: List[List[int]]) -> int:
        n, m = len(grid), len(grid[0])
        q = deque()
        
        count = 0  # 新鲜橘子数
        for i in range(n):
            for j in range(m):
                if grid[i][j] == 1:
                    count += 1
                elif grid[i][j] == 2:
                    q.append((i,j))

        dx = [-1,0,1,0]
        dy = [0,-1,0,1]

        round = 0  # 分钟数
        while count > 0 and len(q) > 0:
            round += 1
            cur = len(q)  # 这一轮有多少个腐烂的橘子一起腐烂周围
            for _ in range(cur):
                i,j = q.popleft()
                for idx in range(4):
                    x = dx[idx] + i
                    y = dy[idx] + j
                    if (0<=x<n) and (0<=y<m) and grid[x][y] == 1:
                        grid[x][y] = 2
                        count -= 1
                        q.append((x,y))

        if count > 0:
            return -1
        else:
            return round

(2)207. 课程表

  1. 每次只能修当前可以修的课程------入度为0的课程
  2. 修完一轮后,再修可以休的课程------入度变为0的课程
  3. 所以我们需要记录每个课程的入度,
  4. 然后需要邻接矩阵来关联课程之间的关系,从而更新入度
py 复制代码
from collections import deque
class Solution:
    def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
        indegree = [0] * numCourses  # 每个课程的入度(即先修课程有几门)
        adj = defaultdict(list) # key为当前课,value为它的后续课程,用列表存

        # 初始化入度和邻接表
        for cur,pre in prerequisites:
            indegree[cur] += 1
            adj[pre].append(cur)
        # 把入度为0的入队列
        q = deque()
        for i in range(numCourses):
            if indegree[i] == 0:
                q.append(i)
        
        while q:
            n = len(q)
            for i in range(n):
                pre = q.popleft()
                numCourses -= 1
                # 遍历课程pre的邻接表:它的后续课程
                for cur in adj[pre]:
                    # 将后续课程的入度 -1
                    indegree[cur] -= 1
                    if indegree[cur] == 0:
                        q.append(cur)
    
        return numCourses == 0
相关推荐
小白教程9 分钟前
Python连接MySQL数据库图文教程,Python连接数据库MySQL入门教程
数据库·python·mysql·python链接数据库·python链接mysql
weixin_3077791310 分钟前
PySpark实现GROUP BY WITH CUBE和WITH ROLLUP的分类汇总功能
大数据·开发语言·python·spark
不太会写39 分钟前
基于Python+django+mysql旅游数据爬虫采集可视化分析推荐系统
python·推荐算法
呱牛do it1 小时前
Python Matplotlib图形美化指南
开发语言·python·matplotlib
pianmian11 小时前
python制图之小提琴图
开发语言·python·信息可视化
橙子小哥的代码世界1 小时前
【机器学习】【KMeans聚类分析实战】用户分群聚类详解——SSE、CH 指数、SC全解析,实战电信客户分群案例
人工智能·python·机器学习·kmeans·数据科学·聚类算法·肘部法
计算机徐师兄1 小时前
Python基于Flask的豆瓣Top250电影数据可视化分析与评分预测系统(附源码,技术说明)
python·flask·豆瓣top250电影数据可视化·豆瓣top250电影评分预测·豆瓣电影数据可视化分析系统·豆瓣电影评分预测系统·豆瓣电影数据
k layc1 小时前
【论文解读】《Training Large Language Models to Reason in a Continuous Latent Space》
人工智能·python·机器学习·语言模型·自然语言处理·大模型推理
阿正的梦工坊1 小时前
Sliding Window Attention(滑动窗口注意力)解析: Pytorch实现并结合全局注意力(Global Attention )
人工智能·pytorch·python
喜-喜2 小时前
Python pip 缓存清理:全面方法与操作指南
python·缓存·pip