目录
1.课题概述
基于PSO粒子群优化的能源供应方,光伏发电,EV充电三方交易策略博弈算法matlab仿真。建立综合能源园区模型与市场交易框架,构建三方非合作博弈模型,通过算例分析验证模型有效性,为综合能源园区市场运营提供理论支持与实践指导。
2.系统仿真结果





3.核心程序与模型
版本:MATLAB2022a
...................................................................................
Matbest = reshape(Xbest,days,[]);
%商家向用户的电费报价
Muser0 = Matbest(:,1);
%商家向用户的热费报价
Muser1 = Matbest(:,2);
%用户向EV的电费报价
Muser2 = Matbest(:,3);
Wbest = ones(1,days)/2;
for i1=1:days
W0=[0:0.025:1];
for i2=1:length(W0)
W = Wbest;
W(i1) = W0(i2);
outz(i2) = func_fitness0(Muser0,Muser1,Muser2,W,i1);
end
[~,Ind] = max(outz);
Wbest(i1) = W0(Ind);
end
tmps = ones(1,days)*250;
%电网给充电站供能
Gpw = W.*tmps;
%用户给充电站供能
Upw = (1-W).*tmps;
%电网供应用户电负荷
Gld = max(Pw_load-Pw_pv+Upw,0);
%电网供电功率
Pgrid = min(Gld+Gpw,500);
%输出功率
Gout = Gld+Gpw;
%机组供电大小
Jpw = max(Gout-Pgrid,0);
%机组供热大小
Jpw2 = Jpw*1.3;
%燃气供给功率
Ph = min(max(Pw_hot-Jpw2,0),500);
%热网供热功率
Qgas = Ph/10;
%电空调热能
Pw_hot2 = Pw_hot-Ph;
figure;
subplot(121);
hold on;
plot(Pgrid,'-b^',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.2,0.9,0.5]);
plot(Ph,'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
legend('电网功率','燃气功率')
xlabel('时间');
ylabel('功率 kw');
axis square
grid on
subplot(122);
plot(Gpw,'-b^',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.2,0.9,0.5]);
hold on;
plot(Upw,'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
legend('电网给充电站供能','用户给充电站供能')
xlabel('时间');
ylabel('功率 kw');
axis square
grid on
figure;
subplot(121);
plot(Pw_pv,'-b^',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.2,0.9,0.5]);
hold on;
plot(Pw_load,'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
hold on;
legend('光伏最大出力','电负荷','');
xlabel('时间');
ylabel('功率 kw');
axis square
grid on
subplot(122);
plot(Pw_hot,'-b^',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.2,0.9,0.5]);
legend('热负荷')
xlabel('时间');
ylabel('需求 kw');
axis square
grid on
figure;
subplot(221);
plot(Gout,'-b^',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.2,0.9,0.5]);
hold on;
plot(Pgrid,'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
legend('园区内部供能功率','电网输出')
xlabel('时间');
ylabel('功率 kw');
axis square
grid on
subplot(222);
plot(Jpw2+Ph,'-b^',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.2,0.9,0.5]);
hold on;
plot(Ph,'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
legend('园区内部热输出','燃气热输出')
xlabel('时间');
ylabel('功率 kw');
axis square
grid on
subplot(223);
plot(Pw_pv+Gld,'-b^',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.2,0.9,0.5]);
hold on;
plot(Pw_pv,'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
legend('外部输入','光伏输出')
xlabel('时间');
ylabel('需求 kw');
axis square
grid on
subplot(224);
plot(Pw_hot+Pw_hot2,'-b^',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.2,0.9,0.5]);
hold on;
plot(Pw_hot2,'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
legend('外部输入热能','电空调热能')
xlabel('时间');
ylabel('需求 kw');
axis square
grid on
103
4.系统原理简介
全球能源危机与环境问题促使综合能源系统成为研究热点。园区综合能源系统作为底层耦合终端,其市场运营机制对能源发展和可再生能源消纳意义重大。随着电改推进,未来园区综合能源系统市场主体多元,交易行为复杂,现有研究在多能耦合市场交易方面存在不足,本文聚焦于此展开研究。
综合能源园区包含园区能量交易中心(ETC)、能源运营商、含分布式光伏的用户、EV 充电代理商。主体间通过能量管理系统(EMS)交流信息,能源运营商连接外部与内部能源网络,负责供能;含分布式光伏的用户兼具能源产消属性;EV 充电代理商管理 EV 充电,是纯电能负荷。

三方市场主体以自身利益最大化为目标。能源运营商制定能源供应价格,含分布式光伏的用户根据运营商报价制定光伏上网电价,EV 充电代理商选比两方报价制定充电策略,三方交易策略构成非合作博弈模型,经互动达纳什均衡。



综合能源园区能降低用能成本,提高分布式清洁能源消纳灵活性。三方非合作博弈模型可平衡各方收益,促进光伏资源消纳和用能成本降低。明确了能源运营商、含分布式光伏的用户和 EV 代理商的市场角色与获利途径。
5.完整工程文件
v
v