【机器学习】衡量线性回归算法最好的指标:R Squared

衡量线性回归算法最好的指标:R Squared

  • 一、摘要
  • [二、回归算法评价指标与R Squared指标介绍](#二、回归算法评价指标与R Squared指标介绍)
  • [三、R Squared的编程实践](#三、R Squared的编程实践)

一、摘要

本文主要介绍了线性回归算法中用于衡量模型优劣的重要指标------R Squared(R方)。R方用于比较模型预测结果与实际结果的拟合程度,其值范围在0到1之间,越接近1表示模型预测效果越好。R方的计算涉及预测误差总误差的比较,其中分子预测误差的平方和分母总误差的平方和当R方等于1时,表示模型预测无误差;小于零则表明模型效果不佳,可能不适合线性回归。 此外,还介绍了如何通过编程实践计算R方值,并在不同的机器学习库中实现该指标的计算。最后,强调了R方作为衡量线性回归模型性能的关键指标的重要性。

二、回归算法评价指标与R Squared指标介绍

  1. 之前的博文中介绍了评价回归算法优劣的三个指标:MSE(均方误差)、RMSE(均方根误差)和MAE(平均绝对误差)。这些指标存在的问题无法直接比较不同问题的预测误差。分类问题的评价指标简单明了,取值在0到1之间,而回归算法的指标没有这样的性质。

  2. R Squared(R方) 是一个解决上述问题的新指标。
    计算方法 :1减去两个量的比值,分子是残差平方和,分母是总平方和。

    • R方计算步骤:计算残差平方和与总平方和,代入公式计算R方值。
    • 残差平方和:预测结果减去 真实值平方和
    • 总平方和:真实值均值平方和

    R Squared的优势:

    • R方将回归问题的衡量结果归约到0到1之间,便于比较不同模型的性能。
    • R方越大越好,越接近1表示模型预测越准确。
    • R方小于零表示模型预测效果不如基准模型。
    • 可能意味着数据间不存在线性关系,需要考虑其他回归方法。

    R Squared的统计意义:

    • R方可以表示为1减去均方误差(MSE)与方差的比值。
    • 均方误差:预测结果与真实值的平方差均值。
    • 方差:真实值的方差。
    • R方衡量模型与基准模型的差异,值越大表示模型预测越准确。



      最后这张图将公式的含义是1 - (MSE(均方误差)/ Var(方差)

三、R Squared的编程实践

  1. 计算R方的编程实践:使用NumPy、SciPy或sklearn等库进行计算。

  2. 示例代码:计算简单线性回归模型的R方值。

    python 复制代码
    import openml
    import numpy as np
    
    # 从 openml 获取波士顿房价数据集
    dataset = openml.datasets.get_dataset(531)
    X, y, categorical_indicator, attribute_names = dataset.get_data(
        target=dataset.default_target_attribute, dataset_format='dataframe'
    )
    
    # 这里只用RM这个特征来计算,提取RM列特征数据
    boston_datas = X.iloc[:,5]
    
    # 分布在50那里的一些点,可能不是真实的点,比如问卷调查中通过会设置一些上限点,而往往这些不是真实存在的额点,因此可以去除
    y_normal = y[y < 50.0]
    x_normal = boston_datas[y < 50.0]
    
    import sys
    # 替换为你的 PyCharm 工程实际路径
    project_path = 'D:/PycharmProjects/pythonProject/'
    if project_path not in sys.path:
        sys.path.append(project_path)
    
    # 拆分训练集和测试集
    from model_selection import train_test_split
    X_train,y_train,X_test,y_test = train_test_split(np.array(x_normal),np.array(y_normal),seed=666)
    
    # 引入我们自己实现的线性回归模型
    from SimpleLinearRegressionDemo import SimpleLinearRegressionModel
    reg1 = SimpleLinearRegressionModel()
    reg1.fit(X_train,y_train)
    
    # 预测结果
    y_predict = reg1.predict(X_test)
    
    # scikit-learn来计算均方误差和绝对值误差
    from sklearn.metrics import mean_squared_error
    from sklearn.metrics import mean_absolute_error
    
    # 根据公式先计算分子: MSE 均方误差
    n_mse = mean_squared_error(y_pred=y_predict,y_true=y_test)
    # 根据公式先计算分母: 测试集的方差
    d_var = np.var(y_test)
    
    # 带入公式,得到R Squared值
    ret_pred = 1 - n_mse / d_var
    ret_pred

    执行结果:0.6129316803937324

相关推荐
再卷也是菜12 小时前
C++篇(21)图
数据结构·c++·算法
星轨初途12 小时前
C++入门(算法竞赛类)
c++·经验分享·笔记·算法
灰灰勇闯IT13 小时前
KMP算法在鸿蒙系统中的应用:从字符串匹配到高效系统级开发(附实战代码)
算法·华为·harmonyos
小龙报13 小时前
【算法通关指南:数据结构和算法篇 】队列相关算法题:3.海港
数据结构·c++·算法·贪心算法·创业创新·学习方法·visual studio
csuzhucong13 小时前
一阶魔方、一阶金字塔魔方、一阶五魔方
算法
五花就是菜13 小时前
P12906 [NERC 2020] Guide 题解
算法·深度优先·图论
韩曙亮13 小时前
【人工智能】AI 人工智能 技术 学习路径分析 ① ( Python语言 -> 微积分 / 概率论 / 线性代数 -> 机器学习 )
人工智能·python·学习·数学·机器学习·ai·微积分
辞旧 lekkk13 小时前
【c++】封装红黑树实现mymap和myset
c++·学习·算法·萌新
星轨初途13 小时前
C++的输入输出(上)(算法竞赛类)
开发语言·c++·经验分享·笔记·算法
n***F87513 小时前
SpringMVC 请求参数接收
前端·javascript·算法