deepseek-glm4-grpo训练

一、目录

1.grpo 重新训练已经微调的glm4模型

二、实现

1.grpo 重新训练已经微调的glm4模型

1.1 指令:

复制代码
 CUDA_VISIBLE_DEVICES=1 nohup python test.py --model_name_or_path /home/LLaMA-Factory/saves/glm4-9b-lora-alpaca_reference_train20250115_01_merge \
        --dataset_name /home/LLaMA-Factory/data/alpca_all_simple.json \
        --learning_rate 5.0e-6 \
        --num_train_epochs 2   \
        --per_device_train_batch_size 2  \
        --num_generations 4 \
        --gradient_accumulation_steps 4 \
         --logging_steps 25 \
        --eval_strategy steps \
        --eval_steps 50 \
        --use_peft 1 \
        --lora_r 32 \
        --lora_alpha 16 \
        --output_dir /saves/glm4-9b-grpo >grop_output.log 2>&1 &

1.2 遇到问题及解决

复制代码
1. tokenizer no padding_side 字段
解决:脚本中添加该字段  padding_side: Optional[str] = None,
 def _pad(
            self,
            encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
            max_length: Optional[int] = None,
            padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
            pad_to_multiple_of: Optional[int] = None,
            padding_side: Optional[str] = None,
            return_attention_mask: Optional[bool] = None,
    ) -> dict:
2. model no num_logits_to_keep 字段
修改模型脚本,进行添加该字段,以及相关功能。
 def forward(
            self,
            input_ids: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.Tensor] = None,
            labels: Optional[torch.Tensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            return_last_logit: Optional[bool] = False,
            num_logits_to_keep: int = 0
    ):
        lm_logits = self.transformer.output_layer(hidden_states[:, -num_logits_to_keep:, :])

1.3 脚本

复制代码
#coding="utf8"
import json
import argparse
from typing import Optional
from dataclasses import dataclass, field
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch.utils.data import Dataset
from trl import GRPOConfig, GRPOTrainer, ModelConfig, ScriptArguments, TrlParser, get_peft_config


@dataclass
class GRPOScriptArguments(ScriptArguments):
    """
    Script arguments for the GRPO training script.

    Args:
        reward_model_name_or_path (`str` or `None`):
            Reward model id of a pretrained model hosted inside a model repo on huggingface.co or local path to a
            directory containing model weights saved using [`~transformers.PreTrainedModel.save_pretrained`].
    """

    reward_model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "Reward model id of a pretrained model hosted inside a model repo on huggingface.co or "
            "local path to a directory containing model weights saved using `PreTrainedModel.save_pretrained`."
        },
    )


class MyDataset(Dataset):
    def __init__(self, dataset):
        self.dataset = dataset
        

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, idx):
        text = self.dataset[idx]["instruction"]
        return {"prompt": text}

def get_dataset(path):
    import json
    with open(path, 'r', encoding='utf-8') as f:
        data = json.load(f)
    dataset = MyDataset(data[:-200])
    evaldataset = MyDataset(data[-200:])
    return dataset, evaldataset


def main(script_args, training_args, model_args):
    # Load a pretrained model
    print(model_args.model_name_or_path)
    model = AutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=True
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=True
    )

    def reward_len(completions, **kwargs):
        #输出奖励
        data = []
        for completion in completions:
           
            try:
                completion = json.loads(completion)
                data.append(1.0)
            except:
                
                data.append(0.0)
         
        return data
    
    # Load the dataset
    dataset, evaldataset = get_dataset(script_args.dataset_name)

    # Initialize the GRPO trainer
    trainer = GRPOTrainer(
        model=model,
        reward_funcs = reward_len,
        args=training_args,
        train_dataset = dataset,
        eval_dataset = evaldataset if training_args.eval_strategy != "no" else None,
        processing_class=tokenizer,
        peft_config=get_peft_config(model_args),
    )

    # Train and push the model to the Hub
    trainer.train()

    # Save and push to hub
    trainer.save_model(training_args.output_dir)
    # if training_args.push_to_hub:
    #     trainer.push_to_hub(dataset_name=script_args.dataset_name)


def make_parser(subparsers: argparse._SubParsersAction = None):
    dataclass_types = (GRPOScriptArguments, GRPOConfig, ModelConfig)
    if subparsers is not None:
        parser = subparsers.add_parser("grpo", help="Run the GRPO training script", dataclass_types=dataclass_types)
    else:
        parser = TrlParser(dataclass_types)
    return parser


if __name__ == "__main__":
    parser = make_parser()
    script_args, training_args, model_args = parser.parse_args_and_config()
    main(script_args, training_args, model_args)
相关推荐
聚客AI1 小时前
Embedding进化论:从Word2Vec到OpenAI三代模型技术跃迁
人工智能·llm·掘金·日新计划
weixin_387545641 小时前
深入解析 AI Gateway:新一代智能流量控制中枢
人工智能·gateway
聽雨2372 小时前
03每日简报20250705
人工智能·社交电子·娱乐·传媒·媒体
二川bro2 小时前
飞算智造JavaAI:智能编程革命——AI重构Java开发新范式
java·人工智能·重构
acstdm2 小时前
DAY 48 CBAM注意力
人工智能·深度学习·机器学习
澪-sl2 小时前
基于CNN的人脸关键点检测
人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测·卷积神经网络
羊小猪~~2 小时前
数据库学习笔记(十七)--触发器的使用
数据库·人工智能·后端·sql·深度学习·mysql·考研
摸爬滚打李上进3 小时前
重生学AI第十六集:线性层nn.Linear
人工智能·pytorch·python·神经网络·机器学习
HuashuiMu花水木3 小时前
PyTorch笔记1----------Tensor(张量):基本概念、创建、属性、算数运算
人工智能·pytorch·笔记
lishaoan773 小时前
使用tensorflow的线性回归的例子(四)
人工智能·tensorflow·线性回归