deepseek-glm4-grpo训练

一、目录

1.grpo 重新训练已经微调的glm4模型

二、实现

1.grpo 重新训练已经微调的glm4模型

1.1 指令:

复制代码
 CUDA_VISIBLE_DEVICES=1 nohup python test.py --model_name_or_path /home/LLaMA-Factory/saves/glm4-9b-lora-alpaca_reference_train20250115_01_merge \
        --dataset_name /home/LLaMA-Factory/data/alpca_all_simple.json \
        --learning_rate 5.0e-6 \
        --num_train_epochs 2   \
        --per_device_train_batch_size 2  \
        --num_generations 4 \
        --gradient_accumulation_steps 4 \
         --logging_steps 25 \
        --eval_strategy steps \
        --eval_steps 50 \
        --use_peft 1 \
        --lora_r 32 \
        --lora_alpha 16 \
        --output_dir /saves/glm4-9b-grpo >grop_output.log 2>&1 &

1.2 遇到问题及解决

复制代码
1. tokenizer no padding_side 字段
解决:脚本中添加该字段  padding_side: Optional[str] = None,
 def _pad(
            self,
            encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
            max_length: Optional[int] = None,
            padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
            pad_to_multiple_of: Optional[int] = None,
            padding_side: Optional[str] = None,
            return_attention_mask: Optional[bool] = None,
    ) -> dict:
2. model no num_logits_to_keep 字段
修改模型脚本,进行添加该字段,以及相关功能。
 def forward(
            self,
            input_ids: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.Tensor] = None,
            labels: Optional[torch.Tensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            return_last_logit: Optional[bool] = False,
            num_logits_to_keep: int = 0
    ):
        lm_logits = self.transformer.output_layer(hidden_states[:, -num_logits_to_keep:, :])

1.3 脚本

复制代码
#coding="utf8"
import json
import argparse
from typing import Optional
from dataclasses import dataclass, field
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch.utils.data import Dataset
from trl import GRPOConfig, GRPOTrainer, ModelConfig, ScriptArguments, TrlParser, get_peft_config


@dataclass
class GRPOScriptArguments(ScriptArguments):
    """
    Script arguments for the GRPO training script.

    Args:
        reward_model_name_or_path (`str` or `None`):
            Reward model id of a pretrained model hosted inside a model repo on huggingface.co or local path to a
            directory containing model weights saved using [`~transformers.PreTrainedModel.save_pretrained`].
    """

    reward_model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "Reward model id of a pretrained model hosted inside a model repo on huggingface.co or "
            "local path to a directory containing model weights saved using `PreTrainedModel.save_pretrained`."
        },
    )


class MyDataset(Dataset):
    def __init__(self, dataset):
        self.dataset = dataset
        

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, idx):
        text = self.dataset[idx]["instruction"]
        return {"prompt": text}

def get_dataset(path):
    import json
    with open(path, 'r', encoding='utf-8') as f:
        data = json.load(f)
    dataset = MyDataset(data[:-200])
    evaldataset = MyDataset(data[-200:])
    return dataset, evaldataset


def main(script_args, training_args, model_args):
    # Load a pretrained model
    print(model_args.model_name_or_path)
    model = AutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=True
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=True
    )

    def reward_len(completions, **kwargs):
        #输出奖励
        data = []
        for completion in completions:
           
            try:
                completion = json.loads(completion)
                data.append(1.0)
            except:
                
                data.append(0.0)
         
        return data
    
    # Load the dataset
    dataset, evaldataset = get_dataset(script_args.dataset_name)

    # Initialize the GRPO trainer
    trainer = GRPOTrainer(
        model=model,
        reward_funcs = reward_len,
        args=training_args,
        train_dataset = dataset,
        eval_dataset = evaldataset if training_args.eval_strategy != "no" else None,
        processing_class=tokenizer,
        peft_config=get_peft_config(model_args),
    )

    # Train and push the model to the Hub
    trainer.train()

    # Save and push to hub
    trainer.save_model(training_args.output_dir)
    # if training_args.push_to_hub:
    #     trainer.push_to_hub(dataset_name=script_args.dataset_name)


def make_parser(subparsers: argparse._SubParsersAction = None):
    dataclass_types = (GRPOScriptArguments, GRPOConfig, ModelConfig)
    if subparsers is not None:
        parser = subparsers.add_parser("grpo", help="Run the GRPO training script", dataclass_types=dataclass_types)
    else:
        parser = TrlParser(dataclass_types)
    return parser


if __name__ == "__main__":
    parser = make_parser()
    script_args, training_args, model_args = parser.parse_args_and_config()
    main(script_args, training_args, model_args)
相关推荐
Elastic 中国社区官方博客5 小时前
使用 Discord 和 Elastic Agent Builder A2A 构建游戏社区支持机器人
人工智能·elasticsearch·游戏·搜索引擎·ai·机器人·全文检索
2501_933329556 小时前
企业级AI舆情中台架构实践:Infoseek系统如何实现亿级数据实时监测与智能处置?
人工智能·架构
阿杰学AI6 小时前
AI核心知识70——大语言模型之Context Engineering(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·数据处理·上下文工程
赛博鲁迅6 小时前
物理AI元年:AI走出屏幕进入现实,88API为机器人装上“最强大脑“
人工智能·机器人
管牛牛6 小时前
图像的卷积操作
人工智能·深度学习·计算机视觉
云卓SKYDROID7 小时前
无人机航线辅助模块技术解析
人工智能·无人机·高科技·云卓科技
琅琊榜首20207 小时前
AI生成脑洞付费短篇小说:从灵感触发到内容落地
大数据·人工智能
imbackneverdie8 小时前
近年来,我一直在用的科研工具
人工智能·自然语言处理·aigc·论文·ai写作·学术·ai工具
roman_日积跬步-终至千里8 小时前
【计算机视觉-作业1】从图像到向量:kNN数据预处理完整流程
人工智能·计算机视觉