deepseek-glm4-grpo训练

一、目录

1.grpo 重新训练已经微调的glm4模型

二、实现

1.grpo 重新训练已经微调的glm4模型

1.1 指令:

复制代码
 CUDA_VISIBLE_DEVICES=1 nohup python test.py --model_name_or_path /home/LLaMA-Factory/saves/glm4-9b-lora-alpaca_reference_train20250115_01_merge \
        --dataset_name /home/LLaMA-Factory/data/alpca_all_simple.json \
        --learning_rate 5.0e-6 \
        --num_train_epochs 2   \
        --per_device_train_batch_size 2  \
        --num_generations 4 \
        --gradient_accumulation_steps 4 \
         --logging_steps 25 \
        --eval_strategy steps \
        --eval_steps 50 \
        --use_peft 1 \
        --lora_r 32 \
        --lora_alpha 16 \
        --output_dir /saves/glm4-9b-grpo >grop_output.log 2>&1 &

1.2 遇到问题及解决

复制代码
1. tokenizer no padding_side 字段
解决:脚本中添加该字段  padding_side: Optional[str] = None,
 def _pad(
            self,
            encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
            max_length: Optional[int] = None,
            padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
            pad_to_multiple_of: Optional[int] = None,
            padding_side: Optional[str] = None,
            return_attention_mask: Optional[bool] = None,
    ) -> dict:
2. model no num_logits_to_keep 字段
修改模型脚本,进行添加该字段,以及相关功能。
 def forward(
            self,
            input_ids: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.Tensor] = None,
            labels: Optional[torch.Tensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            return_last_logit: Optional[bool] = False,
            num_logits_to_keep: int = 0
    ):
        lm_logits = self.transformer.output_layer(hidden_states[:, -num_logits_to_keep:, :])

1.3 脚本

复制代码
#coding="utf8"
import json
import argparse
from typing import Optional
from dataclasses import dataclass, field
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch.utils.data import Dataset
from trl import GRPOConfig, GRPOTrainer, ModelConfig, ScriptArguments, TrlParser, get_peft_config


@dataclass
class GRPOScriptArguments(ScriptArguments):
    """
    Script arguments for the GRPO training script.

    Args:
        reward_model_name_or_path (`str` or `None`):
            Reward model id of a pretrained model hosted inside a model repo on huggingface.co or local path to a
            directory containing model weights saved using [`~transformers.PreTrainedModel.save_pretrained`].
    """

    reward_model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "Reward model id of a pretrained model hosted inside a model repo on huggingface.co or "
            "local path to a directory containing model weights saved using `PreTrainedModel.save_pretrained`."
        },
    )


class MyDataset(Dataset):
    def __init__(self, dataset):
        self.dataset = dataset
        

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, idx):
        text = self.dataset[idx]["instruction"]
        return {"prompt": text}

def get_dataset(path):
    import json
    with open(path, 'r', encoding='utf-8') as f:
        data = json.load(f)
    dataset = MyDataset(data[:-200])
    evaldataset = MyDataset(data[-200:])
    return dataset, evaldataset


def main(script_args, training_args, model_args):
    # Load a pretrained model
    print(model_args.model_name_or_path)
    model = AutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=True
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=True
    )

    def reward_len(completions, **kwargs):
        #输出奖励
        data = []
        for completion in completions:
           
            try:
                completion = json.loads(completion)
                data.append(1.0)
            except:
                
                data.append(0.0)
         
        return data
    
    # Load the dataset
    dataset, evaldataset = get_dataset(script_args.dataset_name)

    # Initialize the GRPO trainer
    trainer = GRPOTrainer(
        model=model,
        reward_funcs = reward_len,
        args=training_args,
        train_dataset = dataset,
        eval_dataset = evaldataset if training_args.eval_strategy != "no" else None,
        processing_class=tokenizer,
        peft_config=get_peft_config(model_args),
    )

    # Train and push the model to the Hub
    trainer.train()

    # Save and push to hub
    trainer.save_model(training_args.output_dir)
    # if training_args.push_to_hub:
    #     trainer.push_to_hub(dataset_name=script_args.dataset_name)


def make_parser(subparsers: argparse._SubParsersAction = None):
    dataclass_types = (GRPOScriptArguments, GRPOConfig, ModelConfig)
    if subparsers is not None:
        parser = subparsers.add_parser("grpo", help="Run the GRPO training script", dataclass_types=dataclass_types)
    else:
        parser = TrlParser(dataclass_types)
    return parser


if __name__ == "__main__":
    parser = make_parser()
    script_args, training_args, model_args = parser.parse_args_and_config()
    main(script_args, training_args, model_args)
相关推荐
霖大侠11 小时前
【无标题】
人工智能·深度学习·机器学习
callJJ11 小时前
Spring AI 文本聊天模型完全指南:ChatModel 与 ChatClient
java·大数据·人工智能·spring·spring ai·聊天模型
是店小二呀12 小时前
CANN 异构计算的极限扩展:从算子融合到多卡通信的统一优化策略
人工智能·深度学习·transformer
冻感糕人~12 小时前
收藏备用|小白&程序员必看!AI Agent入门详解(附工业落地实操关联)
大数据·人工智能·架构·大模型·agent·ai大模型·大模型学习
予枫的编程笔记12 小时前
【Linux入门篇】Ubuntu和CentOS包管理不一样?apt与yum对比实操,看完再也不混淆
linux·人工智能·ubuntu·centos·linux包管理·linux新手教程·rpm离线安装
陈西子在网上冲浪12 小时前
当全国人民用 AI 点奶茶时,你的企业官网还在“人工建站”吗?
人工智能
victory043112 小时前
hello_agent第九章总结
人工智能·agent
骇城迷影12 小时前
Makemore 核心面试题大汇总
人工智能·pytorch·python·深度学习·线性回归
Leoobai12 小时前
当我花30分钟让AI占领了我的树莓派
人工智能
AI资源库12 小时前
Remotion 一个用 React 程序化制作视频的框架
人工智能·语言模型·音视频