机器人学习模拟框架 robosuite 支持强化学习和模仿学习 (1) 快速入门

RoboSuite是一款基于MuJoCo物理引擎构建的机器人学习模拟框架

在现有版本(v1.5)中,它涵盖了丰富多样的机器人实例支持,诸如人形机器人、自定义机器人组合,还包含复合控制器(像全身控制器等)、更多遥控设备选项,以及能够呈现出照片级逼真效果的渲染功能。

支持不同的机械臂:

支持机器狗SpotWithArmFloating:

支持人形机器人GR1ArmOnly:

一、认识robosuite机器人学习模拟框架

该框架最初由斯坦福视觉与学习实验室(SVL)的研究人员于 2017 年底开发,作为机器人学习研究的内部工具。

现在,它得到积极维护,并用于 SVL、UT 机器人感知与学习实验室(RPL) 和 NVIDIA通用体现代理研究组(GEAR) 的机器人研究项目。

**数据驱动算法(例如强化学习和模仿学习)**为机器人技术提供了强大且通用的工具。

在深度学习最新进展的推动下,这些学习范式在各类机器人控制问题中取得了令人振奋的成果。

Robosuite 的总体目标是为研究人员提供以下支持:

  1. 一套标准化的基准测试任务,用于严格评估和算法开发;
  2. 模块化设计,为创建新的机器人模拟环境提供了极大的灵活性;
  3. 高质量实现的机器人控制器和现成的学习算法,以降低入门门槛。

官方文档:https://robosuite.ai/docs/overview.html

开源地址:https://github.com/ARISE-Initiative/robosuite

二、安装robosuite

robosuite 支持 Python3上的macOS 和 Linux系统,安装需要依赖 MuJoCo物理引擎和numpy的支持。

有两种安装方式:通过pip直接安装或者源码安装(方便开发,支持修改代码)

方式1:通过pip直接安装(简单应用)

首先创建一个conda环境:conda create -n robosuite python=3.10

进入robosuite环境:conda activate robosuite

进行安装:pip install robosuite -i https://pypi.tuna.tsinghua.edu.cn/simple

测试demo示例:python -m robosuite.demos.demo_random_action

然后选择不同的示例任务,比如输入0(开门操作),来到下面界面

在选择机器人的型号,比如选择1,然后看到机器人GR1ArmOnly在尝试开门的操作

在窗口中输入"]"切换不同的视角

在选择机器人的型号,比如选择9,然后看到机械臂UR5e在尝试开门的操作

方式2:源码安装(方便开发,支持修改代码)

首先创建一个conda环境:conda create -n robosuite python=3.10

进入robosuite环境:conda activate robosuite

然后下载源码,进入目录,安装相关的依赖

复制代码
$ git clone https://github.com/ARISE-Initiative/robosuite.git
$ cd robosuite
$ pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

安装顺利的,robosuite就安装好啦~

最后设置当前目录为环境变量

export PYTHONPATH=PYTHONPATH:(pwd)


(可选)作者还提供附加功能,例如OpenAI Gym 接口、由PyBullet提供支持的逆运动学控制器以及使用SpaceMouse设备的远程操作

要启用这些附加功能,请通过运行安装额外的依赖项

复制代码
$ pip install -r requirements-extra.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

测试demo示例:python robosuite/demos/demo_random_action.py

然后选择不同的示例任务,比如输入17(双臂运输任务)

选择了多臂环境,以下是多臂环境配置列表,我们选择0

  • 0\] 对置

  • 2\] 单机器人

第一个机器人选择1(GR1ArmOnly)

第二个机器人选择7(SpotWithArmFloating)

三、机器人任务小结

总结一下,在demo_random_action.py示例中,包含19种任务:

  • 0\] 门

  • 2\] 螺母组装

  • 4\] 螺母组装单

  • 6\] 拾取位置

  • 8\] 拾取位置罐

  • 10\] 拾取位置牛奶

  • 12\] 堆叠

  • 14\] 双臂移交

  • 16\] 双臂钉入孔

  • 18\] 擦拭

  • 0\] Baxter

  • 2\] IIWA

  • 4\] Kinova3

  • 6\] Sawyer

  • 8\] Tiago

大家可以组合测试~

四、基本使用方式

robosuite提供了一组标准化的操作任务,用于基准测试。

提供的与环境交互的 API 很简单,类似于OpenAI Gym使用的 API 。下面是如何与环境交互的简单示例。

python 复制代码
import numpy as np
import robosuite as suite

# 创建环境实例
env = suite.make(
    env_name="Lift",  # 任务名称,可以尝试其他任务,例如 "Stack" 或 "Door"
    robots="Panda",  # 使用的机器人类型,可以尝试其他机器人,例如 "Sawyer" 或 "Jaco"
    has_renderer=True,  # 是否启用屏幕渲染器(在屏幕上显示环境)
    has_offscreen_renderer=False,  # 是否启用离屏渲染器(用于生成图像等)
    use_camera_obs=False,  # 是否使用摄像头观察
)

# 重置环境(初始化环境状态)
obs = env.reset()

# 循环运行1000步
for i in range(1000):
    action = np.random.randn(*env.action_spec[0].shape) * 0.1 # 生成随机动作,动作幅度乘以0.1限制动作大小
    obs, reward, done, info = env.step(action) # 在环境中执行动作,获取观察值、奖励、是否完成等信息
    env.render() # 在屏幕上渲染当前环境状态

    # 检查是否需要重置环境
    if done:
        print(f"Episode ended at step {i}. Resetting environment.")
        obs = env.reset()

这段代码通过 robosuite 库创建了一个机器人操作环境,并在其中执行随机动作,同时可视化环境状态。

运行代码后,能看到下面效果:

分享完成~

相关推荐
Deepoch5 小时前
中秋国庆双节餐饮零售破局!Deepoc 具身模型外拓板打造 “假日智能运营新范式
科技·机器人·人机交互·具身智能
同元软控10 小时前
首批CCF教学案例大赛资源上线:涵盖控制仿真、算法与机器人等9大方向
算法·机器人·工业软件·mworks
xwz小王子10 小时前
Nature 正刊:美国麻省理工学院团队开发了多模态机器人平台加速多元素催化剂的发现与优化
机器人·团队开发
、、、、南山小雨、、、、11 小时前
Pytorch强化学习demo
pytorch·深度学习·机器学习·强化学习
施努卡机器视觉12 小时前
SNK施努卡汽车一体式天幕生产线
运维·机器人·自动化
沫儿笙12 小时前
NACHI那智焊接机器人智能气阀
人工智能·机器人
互联科技报12 小时前
企业接待机器人知识库如何分钟级构建
机器人
root_dream12 小时前
树莓派实现的自动垃圾(纸团)回收机器人
机器人
Deepoch12 小时前
Deepoc具身模型外拓板:重塑居家服务机器人的交互革命
科技·机器人·人机交互·具身智能
武子康15 小时前
AI-调查研究-90-具身智能 机器人数据采集与通信中间件全面解析:ROS/ROS2、LCM 与工业总线对比
人工智能·ai·中间件·机器人·职场发展·个人开发·具身智能