机器人学习模拟框架 robosuite 支持强化学习和模仿学习 (1) 快速入门

RoboSuite是一款基于MuJoCo物理引擎构建的机器人学习模拟框架

在现有版本(v1.5)中,它涵盖了丰富多样的机器人实例支持,诸如人形机器人、自定义机器人组合,还包含复合控制器(像全身控制器等)、更多遥控设备选项,以及能够呈现出照片级逼真效果的渲染功能。

支持不同的机械臂:

支持机器狗SpotWithArmFloating:

支持人形机器人GR1ArmOnly:

一、认识robosuite机器人学习模拟框架

该框架最初由斯坦福视觉与学习实验室(SVL)的研究人员于 2017 年底开发,作为机器人学习研究的内部工具。

现在,它得到积极维护,并用于 SVL、UT 机器人感知与学习实验室(RPL) 和 NVIDIA通用体现代理研究组(GEAR) 的机器人研究项目。

**数据驱动算法(例如强化学习和模仿学习)**为机器人技术提供了强大且通用的工具。

在深度学习最新进展的推动下,这些学习范式在各类机器人控制问题中取得了令人振奋的成果。

Robosuite 的总体目标是为研究人员提供以下支持:

  1. 一套标准化的基准测试任务,用于严格评估和算法开发;
  2. 模块化设计,为创建新的机器人模拟环境提供了极大的灵活性;
  3. 高质量实现的机器人控制器和现成的学习算法,以降低入门门槛。

官方文档:https://robosuite.ai/docs/overview.html

开源地址:https://github.com/ARISE-Initiative/robosuite

二、安装robosuite

robosuite 支持 Python3上的macOS 和 Linux系统,安装需要依赖 MuJoCo物理引擎和numpy的支持。

有两种安装方式:通过pip直接安装或者源码安装(方便开发,支持修改代码)

方式1:通过pip直接安装(简单应用)

首先创建一个conda环境:conda create -n robosuite python=3.10

进入robosuite环境:conda activate robosuite

进行安装:pip install robosuite -i https://pypi.tuna.tsinghua.edu.cn/simple

测试demo示例:python -m robosuite.demos.demo_random_action

然后选择不同的示例任务,比如输入0(开门操作),来到下面界面

在选择机器人的型号,比如选择1,然后看到机器人GR1ArmOnly在尝试开门的操作

在窗口中输入"]"切换不同的视角

在选择机器人的型号,比如选择9,然后看到机械臂UR5e在尝试开门的操作

方式2:源码安装(方便开发,支持修改代码)

首先创建一个conda环境:conda create -n robosuite python=3.10

进入robosuite环境:conda activate robosuite

然后下载源码,进入目录,安装相关的依赖

复制代码
$ git clone https://github.com/ARISE-Initiative/robosuite.git
$ cd robosuite
$ pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

安装顺利的,robosuite就安装好啦~

最后设置当前目录为环境变量

export PYTHONPATH=PYTHONPATH:(pwd)


(可选)作者还提供附加功能,例如OpenAI Gym 接口、由PyBullet提供支持的逆运动学控制器以及使用SpaceMouse设备的远程操作

要启用这些附加功能,请通过运行安装额外的依赖项

复制代码
$ pip install -r requirements-extra.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

测试demo示例:python robosuite/demos/demo_random_action.py

然后选择不同的示例任务,比如输入17(双臂运输任务)

选择了多臂环境,以下是多臂环境配置列表,我们选择0

  • 0\] 对置

  • 2\] 单机器人

第一个机器人选择1(GR1ArmOnly)

第二个机器人选择7(SpotWithArmFloating)

三、机器人任务小结

总结一下,在demo_random_action.py示例中,包含19种任务:

  • 0\] 门

  • 2\] 螺母组装

  • 4\] 螺母组装单

  • 6\] 拾取位置

  • 8\] 拾取位置罐

  • 10\] 拾取位置牛奶

  • 12\] 堆叠

  • 14\] 双臂移交

  • 16\] 双臂钉入孔

  • 18\] 擦拭

  • 0\] Baxter

  • 2\] IIWA

  • 4\] Kinova3

  • 6\] Sawyer

  • 8\] Tiago

大家可以组合测试~

四、基本使用方式

robosuite提供了一组标准化的操作任务,用于基准测试。

提供的与环境交互的 API 很简单,类似于OpenAI Gym使用的 API 。下面是如何与环境交互的简单示例。

python 复制代码
import numpy as np
import robosuite as suite

# 创建环境实例
env = suite.make(
    env_name="Lift",  # 任务名称,可以尝试其他任务,例如 "Stack" 或 "Door"
    robots="Panda",  # 使用的机器人类型,可以尝试其他机器人,例如 "Sawyer" 或 "Jaco"
    has_renderer=True,  # 是否启用屏幕渲染器(在屏幕上显示环境)
    has_offscreen_renderer=False,  # 是否启用离屏渲染器(用于生成图像等)
    use_camera_obs=False,  # 是否使用摄像头观察
)

# 重置环境(初始化环境状态)
obs = env.reset()

# 循环运行1000步
for i in range(1000):
    action = np.random.randn(*env.action_spec[0].shape) * 0.1 # 生成随机动作,动作幅度乘以0.1限制动作大小
    obs, reward, done, info = env.step(action) # 在环境中执行动作,获取观察值、奖励、是否完成等信息
    env.render() # 在屏幕上渲染当前环境状态

    # 检查是否需要重置环境
    if done:
        print(f"Episode ended at step {i}. Resetting environment.")
        obs = env.reset()

这段代码通过 robosuite 库创建了一个机器人操作环境,并在其中执行随机动作,同时可视化环境状态。

运行代码后,能看到下面效果:

分享完成~

相关推荐
赫凯15 小时前
【强化学习】第一章 强化学习初探
人工智能·python·强化学习
点云SLAM19 小时前
SLAM文献之A micro Lie theory for state estimation in robotic(2)
机器人·slam·状态估计·李群李代数·位姿优化·流行空间·误差传播
CES_Asia21 小时前
机器人“奥运会”燃动北京——CES Asia 2026全球机器人性能挑战赛与展览定档
大数据·人工智能·机器人
nju_spy1 天前
深度强化学习 TRPO 置信域策略优化实验(sb3_contrib / 手搓 + CartPole-v1 / Breakout-v5)
人工智能·强化学习·共轭梯度法·策略网络·trpo·sb3_contrib·breakout游戏
yoyo君~1 天前
FAST-LIVO2 深度技术解析
算法·计算机视觉·机器人·无人机
Deepoch1 天前
低幻觉AI:重塑科研与教育领域的可信智能新范式
大数据·人工智能·机器学习·机器人·具身模型·deepoc·低幻觉ai
Mryan20051 天前
基于 Nao 机器人的摄像头和声呐结合寻路方式
python·机器人·nao 机器人·naoqi
RPA机器人就选八爪鱼1 天前
银行业流程自动化升级:RPA 机器人赋能金融数智转型
大数据·人工智能·机器人·自动化·rpa
敢敢のwings1 天前
人形机器人全身遥操OpenWBT系统技术解析
机器人
徐桑1 天前
【强化学习笔记】从数学推导到电机控制:深入理解 Policy Gradient 与 Sim-to-Real。
机器人·强化学习