django models 多条件检索

在Python中,使用Pandas库进行数据处理时,经常需要对数据进行过滤(筛选)操作。当你想要根据多个字段(即多个条件)进行筛选时,可以使用多种方法。下面是一些常见的方法:

方法1:使用&(逻辑与)操作符

你可以使用&操作符来组合多个条件。这种方法适用于简单的多个条件组合。

css 复制代码
import pandas as pd
 
# 示例数据
data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David'],
    'Age': [25, 30, 35, 40],
    'City': ['New York', 'Los Angeles', 'New York', 'Chicago']
}
df = pd.DataFrame(data)
 
# 筛选条件:年龄大于30且城市为'New York'
filtered_df = df[(df['Age'] > 30) & (df['City'] == 'New York')]
print(filtered_df)

方法2:使用np.logical_and

如果你想要使代码更清晰或需要处理更复杂的逻辑,可以使用NumPy的logical_and函数。

css 复制代码
import pandas as pd
import numpy as np
 
# 示例数据
data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David'],
    'Age': [25, 30, 35, 40],
    'City': ['New York', 'Los Angeles', 'New York', 'Chicago']
}
df = pd.DataFrame(data)
 
# 筛选条件:年龄大于30且城市为'New York'
filtered_df = df[np.logical_and(df['Age'] > 30, df['City'] == 'New York')]
print(filtered_df)

方法3:使用query方法

Pandas的query方法允许你使用字符串表达式来筛选数据,这在处理复杂的逻辑表达式时非常方便。

css 复制代码
import pandas as pd
 
# 示例数据
data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David'],
    'Age': [25, 30, 35, 40],
    'City': ['New York', 'Los Angeles', 'New York', 'Chicago']
}
df = pd.DataFrame(data)
 
# 筛选条件:年龄大于30且城市为'New York'
filtered_df = df.query('Age > 30 and City == "New York"')
print(filtered_df)

方法4:使用loc结合条件列表

你也可以使用loc方法,并通过列表的方式组合多个条件。

css 复制代码
import pandas as pd
 
# 示例数据
data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David'],
    'Age': [25, 30, 35, 40],
    'City': ['New York', 'Los Angeles', 'New York', 'Chicago']
}
df = pd.DataFrame(data)
 
# 筛选条件:年龄大于30且城市为'New York'
filtered_df = df.loc[(df['Age'] > 30) & (df['City'] == 'New York')]
print(filtered_df)

以上方法都可以有效地根据多个字段进行数据筛选。选择哪一种方法取决于你的具体需求和代码的可读性。通常,对于简单的条件组合,使用&操作符或np.logical_and就足够了;而对于更复杂的逻辑或字符串表达式,query方法可能更方便。而loc方法则提供了另一种灵活的方式来结合多个条件。

参考:

https://blog.csdn.net/Jason_WangYing/article/details/108057960

https://www.cnblogs.com/qq128/p/13428278.html

相关推荐
肖永威9 小时前
macOS环境安装/卸载python实践笔记
笔记·python·macos
TechWJ10 小时前
PyPTO编程范式深度解读:让NPU开发像写Python一样简单
开发语言·python·cann·pypto
枷锁—sha10 小时前
【SRC】SQL注入WAF 绕过应对策略(二)
网络·数据库·python·sql·安全·网络安全
Coder_Boy_10 小时前
基于SpringAI的在线考试系统-考试系统开发流程案例
java·数据库·人工智能·spring boot·后端
abluckyboy10 小时前
Java 实现求 n 的 n^n 次方的最后一位数字
java·python·算法
喵手10 小时前
Python爬虫实战:构建各地统计局数据发布板块的自动化索引爬虫(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集数据csv导出·采集各地统计局数据发布数据·统计局数据采集
掘金者阿豪11 小时前
关系数据库迁移的“暗礁”:金仓数据库如何规避数据完整性与一致性风险
后端
天天爱吃肉821811 小时前
跟着创意天才周杰伦学新能源汽车研发测试!3年从工程师到领域专家的成长秘籍!
数据库·python·算法·分类·汽车
ServBay11 小时前
一个下午,一台电脑,终结你 90% 的 Symfony 重复劳动
后端·php·symfony
sino爱学习11 小时前
高性能线程池实践:Dubbo EagerThreadPool 设计与应用
java·后端