论文笔记:Scaling Sentence Embeddings with Large Language Models

2024 ACL findings

1 intro

  • 直接利用LLMs生成句子嵌入面临两个主要挑战
    • LLMs作为自回归模型生成的是文本而非向量,因此需要将输出向量化
    • 如何有效地将上下文学习的能力融入句子嵌入中也是一个关键问题
  • 论文调查了当前LLMs在句子嵌入中的能力
    • 如何使用LLMs表示句子嵌入,并且提示工程是否有效?
      • 设计了一套prompt
    • 上下文学习是否能提升句子嵌入的质量?
      • ------>通过添加定义句子和相应的词作为示例进行上下文学习,性能可以进一步提高
    • 当模型参数超过数十亿时,参数规模是否依然有效?
      • 从数百万个参数到数十亿个参数的过渡,能够提高STS任务的表现。
      • 然而,继续扩大参数规模可能不会带来更多的改善。
        • 即使是上下文学习,66B的OPT在STS任务上仍然不如6.7B的OPT
      • 尽管如此,扩大模型规模能提高迁移任务的性能。
        • 具有数十亿参数的LLMs在没有任何微调的情况下,仍展现出强大的性能,甚至达到了最新的状态。
    • 将当前对比学习框架融入LLMs后能取得哪些改进?
      • 通过采用对比学习可以进一步提高性能。
      • 通过采用高效的微调技术,LLMs即使在有限计算资源下,也能够在STS任务上取得最先进的成果
  • 通过评估LLaMA和OPT在语义文本相似度(STS)任务和迁移任务上的表现,进行系统性研究

2 方法

2.1 使用LLMs表示句子

  • 提取最后一个token的隐藏向量作为句子嵌入
    • 把bert风格的prompt("This sentence: " [text] " means [MASK]")改成OPT风格的(This sentence: " [text] " means in one word: ")

2.2 使用高效微调的对比学习

  • 还利用对比学习来提升LLMs的句子嵌入能力,已被证明是一种高效的学习方法
    • 这里使用了有监督对比学习
      • 每个句子都有对应的正面句子和硬负面句子
      • l是sequence length

3 实验

相关推荐
لا معنى له2 小时前
目标检测的内涵、发展和经典模型--学习笔记
人工智能·笔记·深度学习·学习·目标检测·机器学习
AKAMAI3 小时前
Akamai Cloud客户案例 | CloudMinister借助Akamai实现多云转型
人工智能·云计算
小a杰.5 小时前
Flutter 与 AI 深度集成指南:从基础实现到高级应用
人工智能·flutter
colorknight5 小时前
数据编织-异构数据存储的自动化治理
数据仓库·人工智能·数据治理·数据湖·数据科学·数据编织·自动化治理
Lun3866buzha5 小时前
篮球场景目标检测与定位_YOLO11-RFPN实现详解
人工智能·目标检测·计算机视觉
janefir5 小时前
LangChain框架下DirectoryLoader使用报错zipfile.BadZipFile
人工智能·langchain
齐齐大魔王6 小时前
COCO 数据集
人工智能·机器学习
AI营销实验室7 小时前
原圈科技AI CRM系统赋能销售新未来,行业应用与创新点评
人工智能·科技
爱笑的眼睛117 小时前
超越MSE与交叉熵:深度解析损失函数的动态本质与高阶设计
java·人工智能·python·ai
tap.AI7 小时前
RAG系列(一) 架构基础与原理
人工智能·架构