论文笔记:Scaling Sentence Embeddings with Large Language Models

2024 ACL findings

1 intro

  • 直接利用LLMs生成句子嵌入面临两个主要挑战
    • LLMs作为自回归模型生成的是文本而非向量,因此需要将输出向量化
    • 如何有效地将上下文学习的能力融入句子嵌入中也是一个关键问题
  • 论文调查了当前LLMs在句子嵌入中的能力
    • 如何使用LLMs表示句子嵌入,并且提示工程是否有效?
      • 设计了一套prompt
    • 上下文学习是否能提升句子嵌入的质量?
      • ------>通过添加定义句子和相应的词作为示例进行上下文学习,性能可以进一步提高
    • 当模型参数超过数十亿时,参数规模是否依然有效?
      • 从数百万个参数到数十亿个参数的过渡,能够提高STS任务的表现。
      • 然而,继续扩大参数规模可能不会带来更多的改善。
        • 即使是上下文学习,66B的OPT在STS任务上仍然不如6.7B的OPT
      • 尽管如此,扩大模型规模能提高迁移任务的性能。
        • 具有数十亿参数的LLMs在没有任何微调的情况下,仍展现出强大的性能,甚至达到了最新的状态。
    • 将当前对比学习框架融入LLMs后能取得哪些改进?
      • 通过采用对比学习可以进一步提高性能。
      • 通过采用高效的微调技术,LLMs即使在有限计算资源下,也能够在STS任务上取得最先进的成果
  • 通过评估LLaMA和OPT在语义文本相似度(STS)任务和迁移任务上的表现,进行系统性研究

2 方法

2.1 使用LLMs表示句子

  • 提取最后一个token的隐藏向量作为句子嵌入
    • 把bert风格的prompt("This sentence: " [text] " means [MASK]")改成OPT风格的(This sentence: " [text] " means in one word: ")

2.2 使用高效微调的对比学习

  • 还利用对比学习来提升LLMs的句子嵌入能力,已被证明是一种高效的学习方法
    • 这里使用了有监督对比学习
      • 每个句子都有对应的正面句子和硬负面句子
      • l是sequence length

3 实验

相关推荐
慢半拍iii10 分钟前
CANN算子开发实战:手把手教你基于ops-nn仓库编写Broadcast广播算子
人工智能·计算机网络·ai
User_芊芊君子23 分钟前
CANN数学计算基石ops-math深度解析:高性能科学计算与AI模型加速的核心引擎
人工智能·深度学习·神经网络·ai
小白|26 分钟前
CANN与联邦学习融合:构建隐私安全的分布式AI推理与训练系统
人工智能·机器学习·自动驾驶
艾莉丝努力练剑33 分钟前
hixl vs NCCL:昇腾生态通信库的独特优势分析
运维·c++·人工智能·cann
梦帮科技34 分钟前
Node.js配置生成器CLI工具开发实战
前端·人工智能·windows·前端框架·node.js·json
程序员泠零澪回家种桔子36 分钟前
Spring AI框架全方位详解
java·人工智能·后端·spring·ai·架构
Echo_NGC223739 分钟前
【FFmpeg 使用指南】Part 3:码率控制策略与质量评估体系
人工智能·ffmpeg·视频·码率
纤纡.1 小时前
PyTorch 入门精讲:从框架选择到 MNIST 手写数字识别实战
人工智能·pytorch·python
大大大反派1 小时前
CANN 生态中的自动化部署引擎:深入 `mindx-sdk` 项目构建端到端 AI 应用
运维·人工智能·自动化
程序猿追1 小时前
深度解读 AIR (AI Runtime):揭秘 CANN 极致算力编排与调度的核心引擎
人工智能