论文笔记:Scaling Sentence Embeddings with Large Language Models

2024 ACL findings

1 intro

  • 直接利用LLMs生成句子嵌入面临两个主要挑战
    • LLMs作为自回归模型生成的是文本而非向量,因此需要将输出向量化
    • 如何有效地将上下文学习的能力融入句子嵌入中也是一个关键问题
  • 论文调查了当前LLMs在句子嵌入中的能力
    • 如何使用LLMs表示句子嵌入,并且提示工程是否有效?
      • 设计了一套prompt
    • 上下文学习是否能提升句子嵌入的质量?
      • ------>通过添加定义句子和相应的词作为示例进行上下文学习,性能可以进一步提高
    • 当模型参数超过数十亿时,参数规模是否依然有效?
      • 从数百万个参数到数十亿个参数的过渡,能够提高STS任务的表现。
      • 然而,继续扩大参数规模可能不会带来更多的改善。
        • 即使是上下文学习,66B的OPT在STS任务上仍然不如6.7B的OPT
      • 尽管如此,扩大模型规模能提高迁移任务的性能。
        • 具有数十亿参数的LLMs在没有任何微调的情况下,仍展现出强大的性能,甚至达到了最新的状态。
    • 将当前对比学习框架融入LLMs后能取得哪些改进?
      • 通过采用对比学习可以进一步提高性能。
      • 通过采用高效的微调技术,LLMs即使在有限计算资源下,也能够在STS任务上取得最先进的成果
  • 通过评估LLaMA和OPT在语义文本相似度(STS)任务和迁移任务上的表现,进行系统性研究

2 方法

2.1 使用LLMs表示句子

  • 提取最后一个token的隐藏向量作为句子嵌入
    • 把bert风格的prompt("This sentence: " [text] " means [MASK]")改成OPT风格的(This sentence: " [text] " means in one word: ")

2.2 使用高效微调的对比学习

  • 还利用对比学习来提升LLMs的句子嵌入能力,已被证明是一种高效的学习方法
    • 这里使用了有监督对比学习
      • 每个句子都有对应的正面句子和硬负面句子
      • l是sequence length

3 实验

相关推荐
python零基础入门小白18 小时前
【万字长文】大模型应用开发:意图路由与查询重写设计模式(从入门到精通)
java·开发语言·设计模式·语言模型·架构·大模型应用开发·大模型学习
杭州泽沃电子科技有限公司18 小时前
在线监测:为医药精细化工奠定安全、合规与质量基石
运维·人工智能·物联网·安全·智能监测
GIS数据转换器18 小时前
GIS+大模型助力安全风险精细化管理
大数据·网络·人工智能·安全·无人机
OJAC11118 小时前
AI跨界潮:金融精英与应届生正涌入人工智能领域
人工智能·金融
机器之心18 小时前
Adam的稳+Muon的快?华为诺亚开源ROOT破解大模型训练「既要又要」的两难困境
人工智能·openai
可观测性用观测云19 小时前
观测云 MCP Server 接入和使用最佳实践
人工智能
掘金一周19 小时前
大部分人都错了!这才是chrome插件多脚本通信的正确姿势 | 掘金一周 11.27
前端·人工智能·后端
xier_ran19 小时前
深度学习:生成对抗网络(GAN)详解
人工智能·深度学习·机器学习·gan
ModestCoder_19 小时前
ROS Bag与导航数据集技术指南
开发语言·人工智能·自然语言处理·机器人·具身智能
海边夕阳200619 小时前
【每天一个AI小知识】:什么是循环神经网络?
人工智能·经验分享·rnn·深度学习·神经网络·机器学习