论文笔记:Scaling Sentence Embeddings with Large Language Models

2024 ACL findings

1 intro

  • 直接利用LLMs生成句子嵌入面临两个主要挑战
    • LLMs作为自回归模型生成的是文本而非向量,因此需要将输出向量化
    • 如何有效地将上下文学习的能力融入句子嵌入中也是一个关键问题
  • 论文调查了当前LLMs在句子嵌入中的能力
    • 如何使用LLMs表示句子嵌入,并且提示工程是否有效?
      • 设计了一套prompt
    • 上下文学习是否能提升句子嵌入的质量?
      • ------>通过添加定义句子和相应的词作为示例进行上下文学习,性能可以进一步提高
    • 当模型参数超过数十亿时,参数规模是否依然有效?
      • 从数百万个参数到数十亿个参数的过渡,能够提高STS任务的表现。
      • 然而,继续扩大参数规模可能不会带来更多的改善。
        • 即使是上下文学习,66B的OPT在STS任务上仍然不如6.7B的OPT
      • 尽管如此,扩大模型规模能提高迁移任务的性能。
        • 具有数十亿参数的LLMs在没有任何微调的情况下,仍展现出强大的性能,甚至达到了最新的状态。
    • 将当前对比学习框架融入LLMs后能取得哪些改进?
      • 通过采用对比学习可以进一步提高性能。
      • 通过采用高效的微调技术,LLMs即使在有限计算资源下,也能够在STS任务上取得最先进的成果
  • 通过评估LLaMA和OPT在语义文本相似度(STS)任务和迁移任务上的表现,进行系统性研究

2 方法

2.1 使用LLMs表示句子

  • 提取最后一个token的隐藏向量作为句子嵌入
    • 把bert风格的prompt("This sentence: " [text] " means [MASK]")改成OPT风格的(This sentence: " [text] " means in one word: ")

2.2 使用高效微调的对比学习

  • 还利用对比学习来提升LLMs的句子嵌入能力,已被证明是一种高效的学习方法
    • 这里使用了有监督对比学习
      • 每个句子都有对应的正面句子和硬负面句子
      • l是sequence length

3 实验

相关推荐
Theodore_10224 小时前
深度学习(9)导数与计算图
人工智能·深度学习·机器学习·矩阵·线性回归
PPIO派欧云5 小时前
PPIO上新GPU实例模板,一键部署PaddleOCR-VL
人工智能
TGITCIC7 小时前
金融RAG落地之痛:不在模型,而在数据结构
人工智能·ai大模型·ai agent·ai智能体·开源大模型·金融ai·金融rag
chenzhiyuan201810 小时前
《十五五规划》下的AI边缘计算机遇:算力下沉与工业智能化
人工智能·边缘计算
whaosoft-14310 小时前
51c深度学习~合集11
人工智能
Tiandaren10 小时前
大模型应用03 || 函数调用 Function Calling || 概念、思想、流程
人工智能·算法·microsoft·数据分析
领航猿1号11 小时前
Pytorch 内存布局优化:Contiguous Memory
人工智能·pytorch·深度学习·机器学习
综合热讯11 小时前
宠智灵宠物识别AI:从犬猫到鸟鱼的全生态智能识别
人工智能·宠物
zskj_zhyl11 小时前
智慧康养新篇章:七彩喜如何重塑老年生活的温度与尊严
大数据·人工智能·科技·物联网·生活
永霖光电_UVLED12 小时前
IVWorks率先将8英寸GaN纳米线片商业化
人工智能·神经网络·生成对抗网络