记录torch运行的bug

Traceback (most recent call last):

File "/mnt2/wsj/table/basetest/test_single.py", line 243, in <module>

QWen2VL()

File "/mnt2/wsj/table/basetest/test_single.py", line 116, in QWen2VL

generated_ids = model.generate(**inputs, max_new_tokens=512)

File "/home/turing1/miniconda3/envs/MiniCPMV_wsj/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context

return func(*args, **kwargs)

File "/home/turing1/miniconda3/envs/MiniCPMV_wsj/lib/python3.10/site-packages/transformers/generation/utils.py", line 2048, in generate

result = self._sample(

File "/home/turing1/miniconda3/envs/MiniCPMV_wsj/lib/python3.10/site-packages/transformers/generation/utils.py", line 3044, in _sample

next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)

RuntimeError: CUDA error: device-side assert triggered

Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

试试看只使用一个gpu

python 复制代码
    model = Qwen2VLForConditionalGeneration.from_pretrained(
        weight_path,
        torch_dtype=torch.bfloat16,
        device_map="sequential",
    )
    processor = AutoProcessor.from_pretrained(weight_path)
python 复制代码
    device = torch.device('cuda:0')    
    text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    ).to(device)
    generated_ids = model.generate(**inputs, max_new_tokens=512)
    generated_ids_trimmed = [
        out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )
相关推荐
B站_计算机毕业设计之家8 分钟前
豆瓣电影数据采集分析推荐系统 | Python Vue Flask框架 LSTM Echarts多技术融合开发 毕业设计源码 计算机
vue.js·python·机器学习·flask·echarts·lstm·推荐算法
哈__15 分钟前
CANN加速图神经网络GNN推理:消息传递与聚合优化
人工智能·深度学习·神经网络
渣渣苏15 分钟前
Langchain实战快速入门
人工智能·python·langchain
User_芊芊君子17 分钟前
CANN_MetaDef图定义框架全解析为AI模型构建灵活高效的计算图表示
人工智能·深度学习·神经网络
lili-felicity24 分钟前
CANN模型量化详解:从FP32到INT8的精度与性能平衡
人工智能·python
数据知道27 分钟前
PostgreSQL实战:详解如何用Python优雅地从PG中存取处理JSON
python·postgresql·json
哈哈你是真的厉害31 分钟前
驾驭万亿参数 MoE:深度剖析 CANN ops-transformer 算子库的“核武库”
人工智能·深度学习·aigc·transformer
ZH154558913140 分钟前
Flutter for OpenHarmony Python学习助手实战:面向对象编程实战的实现
python·学习·flutter
玄同76540 分钟前
SQLite + LLM:大模型应用落地的轻量级数据存储方案
jvm·数据库·人工智能·python·语言模型·sqlite·知识图谱
心疼你的一切41 分钟前
模态交响:CANN驱动的跨模态AIGC统一架构
数据仓库·深度学习·架构·aigc·cann