记录torch运行的bug

Traceback (most recent call last):

File "/mnt2/wsj/table/basetest/test_single.py", line 243, in <module>

QWen2VL()

File "/mnt2/wsj/table/basetest/test_single.py", line 116, in QWen2VL

generated_ids = model.generate(**inputs, max_new_tokens=512)

File "/home/turing1/miniconda3/envs/MiniCPMV_wsj/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context

return func(*args, **kwargs)

File "/home/turing1/miniconda3/envs/MiniCPMV_wsj/lib/python3.10/site-packages/transformers/generation/utils.py", line 2048, in generate

result = self._sample(

File "/home/turing1/miniconda3/envs/MiniCPMV_wsj/lib/python3.10/site-packages/transformers/generation/utils.py", line 3044, in _sample

next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)

RuntimeError: CUDA error: device-side assert triggered

Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

试试看只使用一个gpu

python 复制代码
    model = Qwen2VLForConditionalGeneration.from_pretrained(
        weight_path,
        torch_dtype=torch.bfloat16,
        device_map="sequential",
    )
    processor = AutoProcessor.from_pretrained(weight_path)
python 复制代码
    device = torch.device('cuda:0')    
    text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    ).to(device)
    generated_ids = model.generate(**inputs, max_new_tokens=512)
    generated_ids_trimmed = [
        out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )
相关推荐
deephub44 分钟前
用PyTorch从零构建 DeepSeek R1:模型架构和分步训练详解
人工智能·pytorch·python·深度学习·deepseek
xiao智1 小时前
Ansible 数百台批量操作前期准备工作
linux·python·ansible
仙人掌_lz1 小时前
DeepSeek开源周首日:发布大模型加速核心技术可变长度高效FlashMLA 加持H800算力解码性能狂飙升至3000GB/s
人工智能·深度学习·开源
浪子西科1 小时前
【数据结构】(Python)第六章:图
开发语言·数据结构·python
起个破名想半天了2 小时前
Web自动化之Selenium添加网站Cookies实现免登录
python·selenium·cookie
程序趣谈2 小时前
算法随笔_57 : 游戏中弱角色的数量
数据结构·python·算法
yngsqq3 小时前
NTS库学习,找bug中......
java·学习·bug
小爬虫程序猿3 小时前
使用Python爬虫获取淘宝商品详情:API返回值说明与案例指南
开发语言·爬虫·python
ONE_PUNCH_Ge3 小时前
Python selenium 库
python