TD时间差分算法

TD算法用来估计value-state

给定data/experiece of algorithm,

TD算法:

其中TD error:
δ t = v ( s t ) − [ r t + 1 + γ v ( s t + 1 ) ] = v ( s t ) − v t ‾ \delta_t = v(s_t) -[r_{t+1}+ \gamma v(s_{t+1})]=v(s_t) - \overline{v_{t}} δt=v(st)−[rt+1+γv(st+1)]=v(st)−vt

其中 v t ‾ \overline{v_{t}} vt为目标值,该算法的目标是使得 v t v_t vt在下一个时刻t+1趋近于 v t ‾ \overline{v_{t}} vt.

证明:

最小化TD error为什么能求得最优策略?

假设最优策略为 π \pi π,

也就是说当 v t = v π v_t=v_{\pi} vt=vπ时,TD error = 0;所以最小化TD error可以求得最佳策略。

TD的数学含义

求解给定策略的Bellman公式:

Bellman exception equation:

TD就是求解该bellman公式的RM算法:

推导过程:

可以看出这个解公式和TD算法非常相似,

TD与MC(蒙特卡洛)算法比较

TD:
  • online learning
  • Bootstrapping :更新value 的值依赖于之前对value的估计,需要随机初始值。
  • 低方差:随机采样值较少( R t + 1 R_{t+1} Rt+1, S t + 1 S_{t+1} St+1, A t + 1 A_{t+1} At+1)
  • 有偏差:依赖于初始估计,如果初始估计不准,会造成误差。随着数据越来越多,bais会逐渐变小。
MC:
  • offline learning(必须要等到episode结束之后才能才能累计数据进行更新)只能处理episodic task;
  • Non-boostrapping:直接估计state/action values,不需要随机初始值。
  • 高方差:随机变量多: R t + 1 + R t + 2 + R t + 3 R_{t+1} + R_{t+2} + R_{t+3} Rt+1+Rt+2+Rt+3,且只用较少的采样数据来估计。假设整个episode的长度为L,每步的action的可能性有5个,那么会有 5 L 5^L 5L可能的episode。
  • 无偏估计:不依赖于初始估计。

Sarsa:

刚才介绍的TD算法只能估计state-values,Sarsa可以直接估计action values,并且结合policy improvement可以求解最优策略。

给定策略,如何估计action-value?

Sarsa(State-action-reward-state-action的缩写)就是将TD中的V换为Q:

Sarsa(policy evaluation)结合policy improvement求解最优策略:

首先在给定策略上求解bellman公式(TD算法)

再进行policy improvement

和MC的不同:在对state进行估计update后,立马进行policy update,而不是积累很多数据对state进行一个相对准确的估计

Expected Sarsa:

与Sarsa的区别:

TD target由 r t + 1 + γ q ( s t + 1 , a t + 1 ) r_{t+1}+ \gamma q(s_{t+1},a_{t+1}) rt+1+γq(st+1,at+1)变为了 r t + 1 + γ v ( s t + 1 ) r_{t+1}+ \gamma v(s_{t+1}) rt+1+γv(st+1)

由于要计算期望,所以需要更多的数据;

由于不需要得到 a t + 1 a_{t+1} at+1,所以观测的随机变量变少了,随机性变少了,方差变小了

N-step Sarsa:

将Sarsa与MC相结合:

Sarsa基于一步的action来计算,N-step Sarsa等待n步的数据,再计算

N-step Sarsa 是一个更一般化的形式,当n=1,为Sarsa算法,当n-> ∞ \infty ∞时就变成了MC算法。N-step Sarsa是两个算法之间的一种平衡,可以平衡方差和偏差。

相关推荐
千匠网络1 分钟前
S2B供应链平台:优化资源配置,推动产业升级
大数据·人工智能·产品运营·供应链·s2b
算家计算6 分钟前
突然发布!GPT-5.2深夜来袭,3个版本碾压人类专家,打工人该怎么选?
算法·openai·ai编程
JERRY. LIU13 分钟前
大脑各组织类型及其电磁特性
人工智能·神经网络·计算机视觉
l木本I28 分钟前
uv 技术详解
人工智能·python·深度学习·机器学习·uv
通义灵码34 分钟前
在 IDEA 里用 AI 写完两个 Java 全栈功能,花了 7 分钟
人工智能·ai编程·qoder
AI营销快线38 分钟前
AI如何每日自动生成大量高质量营销素材?
大数据·人工智能
元智启40 分钟前
企业 AI 智能体:零代码落地指南与多场景实操案例
人工智能
xiaoxiaoxiaolll44 分钟前
智能计算模拟:第一性原理+分子动力学+机器学习
人工智能·机器学习
OpenCSG1 小时前
现代 AI 代理设计:17 种架构的系统化实战合集
人工智能·架构
AKAMAI1 小时前
BlackstoneOne 实现业务十倍增长
人工智能·云计算