图像修复:深度学习实现老照片划痕修复+老照片上色

第一步: 介绍

1)GLCIC-PyTorch是一个基于PyTorch的开源项目,它实现了"全局和局部一致性图像修复"方法。该方法由Iizuka等人提出,主要用于图像修复任务,能够有效地恢复图像中被遮挡或损坏的部分。项目使用Python编程语言编写,并依赖于PyTorch深度学习框架。

2) DDColor 是最新的 SOTA 图像上色算法,能够对输入的黑白图像生成自然生动的彩色结果,使用 UNet 结构的骨干网络和图像解码器分别实现图像特征提取和特征图上采样,并利用 Transformer 结构的颜色解码器完成基于视觉语义的颜色查询,最终聚合输出彩色通道预测结果。

核心思想:先GLCIC修复划痕,再DDColor进行上色

第二步:网络结构

1) GLCIC项目的核心功能是图像修复,它通过训练一个生成网络(Completion Network)和一个判别网络(Context Discriminator)来实现。生成网络负责完成图像修复任务,而判别网络则用于提高修复质量,确保修复后的图像在全局和局部上都与原始图像保持一致性。主要特点如下:

图像修复:利用生成网络对图像中缺失的部分进行修复。

全局与局部一致性:确保修复后的图像既在全局上与原图一致,又在局部细节上保持连贯。

判别网络辅助:通过判别网络对生成图像进行评估,以提升修复质量。

2)DDColor算法整体流程如下图,使用 UNet 结构的骨干网络和图像解码器分别实现图像特征提取和特征图上采样,并利用 Transformer 结构的颜色解码器完成基于视觉语义的颜色查询,最终聚合输出彩色通道预测结果。

第三步:模型代码展示

python 复制代码
import os
import torch
from collections import OrderedDict
from os import path as osp
from tqdm import tqdm
import numpy as np
 
from basicsr.archs import build_network
from basicsr.losses import build_loss
from basicsr.metrics import calculate_metric
from basicsr.utils import get_root_logger, imwrite, tensor2img
from basicsr.utils.img_util import tensor_lab2rgb
from basicsr.utils.dist_util import master_only
from basicsr.utils.registry import MODEL_REGISTRY
from .base_model import BaseModel
from basicsr.metrics.custom_fid import INCEPTION_V3_FID, get_activations, calculate_activation_statistics, calculate_frechet_distance
from basicsr.utils.color_enhance import color_enhacne_blend
 
 
@MODEL_REGISTRY.register()
class ColorModel(BaseModel):
    """Colorization model for single image colorization."""
 
    def __init__(self, opt):
        super(ColorModel, self).__init__(opt)
 
        # define network net_g
        self.net_g = build_network(opt['network_g'])
        self.net_g = self.model_to_device(self.net_g)
        self.print_network(self.net_g)
        
        # load pretrained model for net_g
        load_path = self.opt['path'].get('pretrain_network_g', None)
        if load_path is not None:
            param_key = self.opt['path'].get('param_key_g', 'params')
            self.load_network(self.net_g, load_path, self.opt['path'].get('strict_load_g', True), param_key)
 
        if self.is_train:
            self.init_training_settings()
 
    def init_training_settings(self):
        train_opt = self.opt['train']
 
        self.ema_decay = train_opt.get('ema_decay', 0)
        if self.ema_decay > 0:
            logger = get_root_logger()
            logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
            # define network net_g with Exponential Moving Average (EMA)
            # net_g_ema is used only for testing on one GPU and saving
            # There is no need to wrap with DistributedDataParallel
            self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
            # load pretrained model
            load_path = self.opt['path'].get('pretrain_network_g', None)
            if load_path is not None:
                self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
            else:
                self.model_ema(0)  # copy net_g weight
            self.net_g_ema.eval()
 
        # define network net_d
        self.net_d = build_network(self.opt['network_d'])
        self.net_d = self.model_to_device(self.net_d)
        self.print_network(self.net_d)
 
        # load pretrained model for net_d
        load_path = self.opt['path'].get('pretrain_network_d', None)
        if load_path is not None:
            param_key = self.opt['path'].get('param_key_d', 'params')
            self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True), param_key)
 
        self.net_g.train()
        self.net_d.train()
 
        # define losses
        if train_opt.get('pixel_opt'):
            self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
        else:
            self.cri_pix = None
 
        if train_opt.get('perceptual_opt'):
            self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
        else:
            self.cri_perceptual = None
 
        if train_opt.get('gan_opt'):
            self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)
        else:
            self.cri_gan = None
 
        if self.cri_pix is None and self.cri_perceptual is None:
            raise ValueError('Both pixel and perceptual losses are None.')
 
        if train_opt.get('colorfulness_opt'):
            self.cri_colorfulness = build_loss(train_opt['colorfulness_opt']).to(self.device)
        else:
            self.cri_colorfulness = None
 
        # set up optimizers and schedulers
        self.setup_optimizers()
        self.setup_schedulers()
 
        # set real dataset cache for fid metric computing
        self.real_mu, self.real_sigma = None, None
        if self.opt['val'].get('metrics') is not None and self.opt['val']['metrics'].get('fid') is not None:
            self._prepare_inception_model_fid()
 
    def setup_optimizers(self):
        train_opt = self.opt['train']
        # optim_params_g = []
        # for k, v in self.net_g.named_parameters():
        #     if v.requires_grad:
        #         optim_params_g.append(v)
        #     else:
        #         logger = get_root_logger()
        #         logger.warning(f'Params {k} will not be optimized.')
        optim_params_g = self.net_g.parameters()
 
        # optimizer g
        optim_type = train_opt['optim_g'].pop('type')
        self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, **train_opt['optim_g'])
        self.optimizers.append(self.optimizer_g)
 
        # optimizer d
        optim_type = train_opt['optim_d'].pop('type')
        self.optimizer_d = self.get_optimizer(optim_type, self.net_d.parameters(), **train_opt['optim_d'])
        self.optimizers.append(self.optimizer_d)
    
    def feed_data(self, data):
        self.lq = data['lq'].to(self.device)
        self.lq_rgb = tensor_lab2rgb(torch.cat([self.lq, torch.zeros_like(self.lq), torch.zeros_like(self.lq)], dim=1))
        if 'gt' in data:
            self.gt = data['gt'].to(self.device)
            self.gt_lab = torch.cat([self.lq, self.gt], dim=1)
            self.gt_rgb = tensor_lab2rgb(self.gt_lab)
 
            if self.opt['train'].get('color_enhance', False):
                for i in range(self.gt_rgb.shape[0]):
                    self.gt_rgb[i] = color_enhacne_blend(self.gt_rgb[i], factor=self.opt['train'].get('color_enhance_factor'))
 
    def optimize_parameters(self, current_iter):
        # optimize net_g
        for p in self.net_d.parameters():
            p.requires_grad = False
        self.optimizer_g.zero_grad()
        
        self.output_ab = self.net_g(self.lq_rgb)
        self.output_lab = torch.cat([self.lq, self.output_ab], dim=1)
        self.output_rgb = tensor_lab2rgb(self.output_lab)
 
        l_g_total = 0
        loss_dict = OrderedDict()
        # pixel loss
        if self.cri_pix:
            l_g_pix = self.cri_pix(self.output_ab, self.gt)
            l_g_total += l_g_pix
            loss_dict['l_g_pix'] = l_g_pix
 
        # perceptual loss
        if self.cri_perceptual:
            l_g_percep, l_g_style = self.cri_perceptual(self.output_rgb, self.gt_rgb)
            if l_g_percep is not None:
                l_g_total += l_g_percep
                loss_dict['l_g_percep'] = l_g_percep
            if l_g_style is not None:
                l_g_total += l_g_style
                loss_dict['l_g_style'] = l_g_style
        # gan loss
        if self.cri_gan:
            fake_g_pred = self.net_d(self.output_rgb)
            l_g_gan = self.cri_gan(fake_g_pred, target_is_real=True, is_disc=False)
            l_g_total += l_g_gan
            loss_dict['l_g_gan'] = l_g_gan
        # colorfulness loss
        if self.cri_colorfulness:
            l_g_color = self.cri_colorfulness(self.output_rgb)
            l_g_total += l_g_color
            loss_dict['l_g_color'] = l_g_color
 
        l_g_total.backward()
        self.optimizer_g.step()
 
        # optimize net_d
        for p in self.net_d.parameters():
            p.requires_grad = True
        self.optimizer_d.zero_grad()
 
        real_d_pred = self.net_d(self.gt_rgb)
        fake_d_pred = self.net_d(self.output_rgb.detach())
        l_d = self.cri_gan(real_d_pred, target_is_real=True, is_disc=True) + self.cri_gan(fake_d_pred, target_is_real=False, is_disc=True)
        loss_dict['l_d'] = l_d
        loss_dict['real_score'] = real_d_pred.detach().mean()
        loss_dict['fake_score'] = fake_d_pred.detach().mean()
 
        l_d.backward()
        self.optimizer_d.step()
 
        self.log_dict = self.reduce_loss_dict(loss_dict)
 
        if self.ema_decay > 0:
            self.model_ema(decay=self.ema_decay)
 
    def get_current_visuals(self):
        out_dict = OrderedDict()
        out_dict['lq'] = self.lq_rgb.detach().cpu()
        out_dict['result'] = self.output_rgb.detach().cpu()
        if self.opt['logger'].get('save_snapshot_verbose', False):  # only for verbose
            self.output_lab_chroma = torch.cat([torch.ones_like(self.lq) * 50, self.output_ab], dim=1)
            self.output_rgb_chroma = tensor_lab2rgb(self.output_lab_chroma)
            out_dict['result_chroma'] = self.output_rgb_chroma.detach().cpu()
 
        if hasattr(self, 'gt'):
            out_dict['gt'] = self.gt_rgb.detach().cpu()
            if self.opt['logger'].get('save_snapshot_verbose', False):  # only for verbose
                self.gt_lab_chroma = torch.cat([torch.ones_like(self.lq) * 50, self.gt], dim=1)
                self.gt_rgb_chroma = tensor_lab2rgb(self.gt_lab_chroma)
                out_dict['gt_chroma'] = self.gt_rgb_chroma.detach().cpu()
        return out_dict
 
    def test(self):
        if hasattr(self, 'net_g_ema'):
            self.net_g_ema.eval()
            with torch.no_grad():
                self.output_ab = self.net_g_ema(self.lq_rgb)
                self.output_lab = torch.cat([self.lq, self.output_ab], dim=1)
                self.output_rgb = tensor_lab2rgb(self.output_lab)
        else:
            self.net_g.eval()
            with torch.no_grad():
                self.output_ab = self.net_g(self.lq_rgb)
                self.output_lab = torch.cat([self.lq, self.output_ab], dim=1)
                self.output_rgb = tensor_lab2rgb(self.output_lab)
            self.net_g.train()
    
    def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
        if self.opt['rank'] == 0:
            self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
    
    def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
        dataset_name = dataloader.dataset.opt['name']
        with_metrics = self.opt['val'].get('metrics') is not None
        use_pbar = self.opt['val'].get('pbar', False)
 
        if with_metrics and not hasattr(self, 'metric_results'):  # only execute in the first run
            self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
        # initialize the best metric results for each dataset_name (supporting multiple validation datasets)
        if with_metrics:
            self._initialize_best_metric_results(dataset_name)
        # zero self.metric_results
        if with_metrics:
            self.metric_results = {metric: 0 for metric in self.metric_results}
 
        metric_data = dict()
        if use_pbar:
            pbar = tqdm(total=len(dataloader), unit='image')
        
        if self.opt['val']['metrics'].get('fid') is not None:
            fake_acts_set, acts_set = [], []
 
        for idx, val_data in enumerate(dataloader):
            # if idx == 100:
            #     break
            img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
            if hasattr(self, 'gt'):
                del self.gt
            self.feed_data(val_data)
            self.test()
 
            visuals = self.get_current_visuals()
            sr_img = tensor2img([visuals['result']])
            metric_data['img'] = sr_img
            if 'gt' in visuals:
                gt_img = tensor2img([visuals['gt']])
                metric_data['img2'] = gt_img
 
            torch.cuda.empty_cache()
 
            if save_img:
                if self.opt['is_train']:
                    save_dir = osp.join(self.opt['path']['visualization'], img_name)
                    for key in visuals:
                        save_path = os.path.join(save_dir, '{}_{}.png'.format(current_iter, key))
                        img = tensor2img(visuals[key])
                        imwrite(img, save_path)
                else:
                    if self.opt['val']['suffix']:
                        save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
                                                 f'{img_name}_{self.opt["val"]["suffix"]}.png')
                    else:
                        save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
                                                 f'{img_name}_{self.opt["name"]}.png')
                    imwrite(sr_img, save_img_path)
 
            if with_metrics:
                # calculate metrics
                for name, opt_ in self.opt['val']['metrics'].items():
                    if name == 'fid':
                        pred, gt = visuals['result'].cuda(), visuals['gt'].cuda()
                        fake_act = get_activations(pred, self.inception_model_fid, 1)
                        fake_acts_set.append(fake_act)
                        if self.real_mu is None:
                            real_act = get_activations(gt, self.inception_model_fid, 1)
                            acts_set.append(real_act)
                    else:
                        self.metric_results[name] += calculate_metric(metric_data, opt_)
            if use_pbar:
                pbar.update(1)
                pbar.set_description(f'Test {img_name}')
        if use_pbar:
            pbar.close()
 
        if with_metrics:
            if self.opt['val']['metrics'].get('fid') is not None:
                if self.real_mu is None:
                    acts_set = np.concatenate(acts_set, 0)
                    self.real_mu, self.real_sigma = calculate_activation_statistics(acts_set)
                fake_acts_set = np.concatenate(fake_acts_set, 0)
                fake_mu, fake_sigma = calculate_activation_statistics(fake_acts_set)
 
                fid_score = calculate_frechet_distance(self.real_mu, self.real_sigma, fake_mu, fake_sigma)
                self.metric_results['fid'] = fid_score
 
            for metric in self.metric_results.keys():
                if metric != 'fid':
                    self.metric_results[metric] /= (idx + 1)
                # update the best metric result
                self._update_best_metric_result(dataset_name, metric, self.metric_results[metric], current_iter)
 
            self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
 
    def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
        log_str = f'Validation {dataset_name}\n'
        for metric, value in self.metric_results.items():
            log_str += f'\t # {metric}: {value:.4f}'
            if hasattr(self, 'best_metric_results'):
                log_str += (f'\tBest: {self.best_metric_results[dataset_name][metric]["val"]:.4f} @ '
                            f'{self.best_metric_results[dataset_name][metric]["iter"]} iter')
            log_str += '\n'
 
        logger = get_root_logger()
        logger.info(log_str)
        if tb_logger:
            for metric, value in self.metric_results.items():
                tb_logger.add_scalar(f'metrics/{dataset_name}/{metric}', value, current_iter)
 
    def _prepare_inception_model_fid(self, path='pretrain/inception_v3_google-1a9a5a14.pth'):
        incep_state_dict = torch.load(path, map_location='cpu')
        block_idx = INCEPTION_V3_FID.BLOCK_INDEX_BY_DIM[2048]
        self.inception_model_fid = INCEPTION_V3_FID(incep_state_dict, [block_idx])
        self.inception_model_fid.cuda()
        self.inception_model_fid.eval()
 
    @master_only
    def save_training_images(self, current_iter):
        visuals = self.get_current_visuals()
        save_dir = osp.join(self.opt['root_path'], 'experiments', self.opt['name'], 'training_images_snapshot')
        os.makedirs(save_dir, exist_ok=True)
 
        for key in visuals:
            save_path = os.path.join(save_dir, '{}_{}.png'.format(current_iter, key))
            img = tensor2img(visuals[key])
            imwrite(img, save_path)
 
    def save(self, epoch, current_iter):
        if hasattr(self, 'net_g_ema'):
            self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
        else:
            self.save_network(self.net_g, 'net_g', current_iter)
        self.save_network(self.net_d, 'net_d', current_iter)
        self.save_training_state(epoch, current_iter)

第四步:运行

第五步:整个工程的内容

项目完整文件下载请见演示与介绍视频的简介处给出:➷➷➷

图像修复:深度学习实现老照片划痕修复+老照片上色_哔哩哔哩_bilibili

相关推荐
一碗白开水一37 分钟前
自动驾驶激光3D点云处理系统性阐述及Open3D库函数应用
人工智能·3d·自动驾驶
机器之心1 小时前
两周反转:Anthropic「闪电」夺回被Cursor挖走的核心编程大将
人工智能
阿里云大数据AI技术1 小时前
Post-Training on PAI (4):模型微调SFT、DPO、GRPO
人工智能·算法·云计算
CoovallyAIHub1 小时前
卷积网络到底能不能“定位”?一次对空间表示能力的深度解析
深度学习·算法·计算机视觉
_一条咸鱼_1 小时前
LangChain解析器性能优化方法深入分析(22)
人工智能·面试·langchain
安思派Anspire2 小时前
企业流程的智能体 AI 生命周期
深度学习·架构
_一条咸鱼_2 小时前
LangChain处理解析错误的容错策略源码级分析(21)
人工智能·面试·langchain
PineappleCoder2 小时前
LLMs:AI时代的“大脑”如何重塑未来?
人工智能
明明跟你说过2 小时前
Grok 系列大模型:xAI 的智能宇宙探秘
人工智能·语言模型·自然语言处理
羑悻的小杀马特2 小时前
从混沌到秩序:数据科学的热力学第二定律破局——线性回归的熵减模型 × 最小二乘的能量最小化 × 梯度下降的负反馈控制系统,用物理定律重构智能算法的统一场论
人工智能·算法·机器学习