神经网络中的Adadelta

Adadelta 是一种自适应学习率的优化算法,旨在解决 Adagrad 学习率急剧下降的问题,并且不需要手动设置初始学习率。它是由 Matthew D. Zeiler 在2012年的论文《ADADELTA: An Adaptive Learning Rate Method》中提出的。

Adadelta 的核心思想

Adadelta 通过维护一个运行时的梯度平方累积量来动态调整每个参数的学习率,但它引入了一个额外的机制来避免学习率过快衰减的问题。具体来说,Adadelta 不直接存储所有过去梯度的平方和,而是使用了一个窗口大小为 \( w \) 的衰减平均(类似于指数加权移动平均),这使得它可以更灵活地应对不同阶段的学习需求。

数学表达

Adadelta 的更新规则如下:

  1. **计算梯度平方的衰减平均**:

\[ E[g^2]t = \rho E[g^2]{t-1} + (1-\rho)g_t^2 \]

这里,\( g_t \) 是当前时间步的梯度,\( E[g^2]_t \) 表示直到当前时间步为止梯度平方的衰减平均值,\( \rho \) 是一个衰减系数(通常设为0.9左右)。

  1. **计算更新步长的衰减平均**:

\[ \Delta x_t = -\frac{RMS[\Delta x]_{t-1}}{RMS[g]_t} g_t \]

其中,

\[ RMS[\Delta x]_t = \sqrt{E[\Delta x^2]_t + \epsilon} \]

\[ RMS[g]_t = \sqrt{E[g^2]_t + \epsilon} \]

\( E[\Delta x^2]_t \) 是更新步长平方的衰减平均值,最初设为0。这里 \( \epsilon \) 是一个小常数(例如 \( 10^{-8} \)),用于防止除零错误。

  1. **更新参数**:

\[ E[\Delta x^2]t = \rho E[\Delta x^2]{t-1} + (1-\rho)\Delta x_t^2 \]

\[ x_{t+1} = x_t + \Delta x_t \]

特点与优势

  • **无需预设学习率**:不同于其他需要手动设定初始学习率的方法,Adadelta 自动适应学习率。

  • **减少学习率衰减问题**:通过使用梯度平方和更新步长平方的衰减平均而非累积总和,Adadelta 能够更好地平衡早期和后期的学习率,从而缓解了 Adagrad 中出现的学习率过快下降的问题。

  • **适用于稀疏数据**:像 Adagrad 一样,Adadelta 对于处理稀疏特征的数据集也非常有效,因为它能够对不同参数应用不同的学习率。

实践中的应用

在实际应用中,Adadelta 提供了一种有效的方式来自动调整学习率,特别是在训练深度神经网络时。由于其不需要手动调节学习率,因此可以简化超参数调优过程。然而,尽管 Adadelta 有很多优点,但随着深度学习的发展,出现了更多先进的优化算法如 Adam 和 RMSprop,这些算法在许多情况下提供了更好的性能。

相关推荐
腾讯云开发者37 分钟前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗41 分钟前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
yLDeveloper1 小时前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
Coder_Boy_1 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信1 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235862 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs2 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习
董董灿是个攻城狮2 小时前
AI 视觉连载2:灰度图
人工智能
yunfuuwqi2 小时前
OpenClaw✅真·喂饭级教程:2026年OpenClaw(原Moltbot)一键部署+接入飞书最佳实践
运维·服务器·网络·人工智能·飞书·京东云