神经网络中的Adadelta

Adadelta 是一种自适应学习率的优化算法,旨在解决 Adagrad 学习率急剧下降的问题,并且不需要手动设置初始学习率。它是由 Matthew D. Zeiler 在2012年的论文《ADADELTA: An Adaptive Learning Rate Method》中提出的。

Adadelta 的核心思想

Adadelta 通过维护一个运行时的梯度平方累积量来动态调整每个参数的学习率,但它引入了一个额外的机制来避免学习率过快衰减的问题。具体来说,Adadelta 不直接存储所有过去梯度的平方和,而是使用了一个窗口大小为 \( w \) 的衰减平均(类似于指数加权移动平均),这使得它可以更灵活地应对不同阶段的学习需求。

数学表达

Adadelta 的更新规则如下:

  1. **计算梯度平方的衰减平均**:

\[ E[g^2]t = \rho E[g^2]{t-1} + (1-\rho)g_t^2 \]

这里,\( g_t \) 是当前时间步的梯度,\( E[g^2]_t \) 表示直到当前时间步为止梯度平方的衰减平均值,\( \rho \) 是一个衰减系数(通常设为0.9左右)。

  1. **计算更新步长的衰减平均**:

\[ \Delta x_t = -\frac{RMS[\Delta x]_{t-1}}{RMS[g]_t} g_t \]

其中,

\[ RMS[\Delta x]_t = \sqrt{E[\Delta x^2]_t + \epsilon} \]

\[ RMS[g]_t = \sqrt{E[g^2]_t + \epsilon} \]

\( E[\Delta x^2]_t \) 是更新步长平方的衰减平均值,最初设为0。这里 \( \epsilon \) 是一个小常数(例如 \( 10^{-8} \)),用于防止除零错误。

  1. **更新参数**:

\[ E[\Delta x^2]t = \rho E[\Delta x^2]{t-1} + (1-\rho)\Delta x_t^2 \]

\[ x_{t+1} = x_t + \Delta x_t \]

特点与优势

  • **无需预设学习率**:不同于其他需要手动设定初始学习率的方法,Adadelta 自动适应学习率。

  • **减少学习率衰减问题**:通过使用梯度平方和更新步长平方的衰减平均而非累积总和,Adadelta 能够更好地平衡早期和后期的学习率,从而缓解了 Adagrad 中出现的学习率过快下降的问题。

  • **适用于稀疏数据**:像 Adagrad 一样,Adadelta 对于处理稀疏特征的数据集也非常有效,因为它能够对不同参数应用不同的学习率。

实践中的应用

在实际应用中,Adadelta 提供了一种有效的方式来自动调整学习率,特别是在训练深度神经网络时。由于其不需要手动调节学习率,因此可以简化超参数调优过程。然而,尽管 Adadelta 有很多优点,但随着深度学习的发展,出现了更多先进的优化算法如 Adam 和 RMSprop,这些算法在许多情况下提供了更好的性能。

相关推荐
百***07453 分钟前
GPT-Image-1.5 极速接入全流程及关键要点
人工智能·gpt·计算机视觉
yiersansiwu123d17 分钟前
AI二创的版权迷局与健康生态构建之道
人工智能
Narrastory23 分钟前
拆解指数加权平均:5 分钟看懂机器学习的 “数据平滑神器”
人工智能·机器学习
SelectDB26 分钟前
慢 SQL 诊断准确率 99.99%,天翼云基于 Apache Doris MCP 的 AI 智能运维实践
数据库·人工智能·apache
王中阳Go29 分钟前
05 Go Eino AI应用开发实战 | Docker 部署指南
人工智能·后端·go
腾讯云开发者34 分钟前
当10年架构师拿起AI:不是写不动了,是写得太快了
人工智能
小马过河R1 小时前
RAG检索增强生成:通过重排序提升AI信息检索精准度
人工智能·语言模型
不惑_1 小时前
通俗理解卷积神经网络
人工智能·windows·python·深度学习·机器学习
rayufo1 小时前
自定义数据在深度学习中的应用方法
人工智能·深度学习
梦帮科技1 小时前
量子计算+AI:下一代智能的终极形态?(第一部分)
人工智能·python·神经网络·深度优先·量子计算·模拟退火算法