ai-3、机器学习之逻辑回归

机器学习之逻辑回归

1、分类问题


分类问题常用的算法:逻辑回归





y=0 :垃圾邮件

y=1:正常邮件

准确来说是分类任务与线性回归任务的区别

2、逻辑回归

2.1、二分类问题线性回归



分类任务可以尝试建立线性回归模型,找出y=ax+b的函数表达式

已知10个点建立线性回归模型

(-5,0) (-4,0) (-3,0) (-2,0) (-1,0)

(1,1) (2,1) (3,1) (4,1) (5,1)

复制代码
import numpy as np
from sklearn.linear_model import LinearRegression
# 获取数据
x = np.array([-5, -4, -3, -2, -1, 1, 2, 3, 4, 5])
X = x.reshape(-1, 1)
y = np.array([0,0,0,0,0,1,1,1,1,1])
# 寻找a、b(y = ax + b)
lr_model = LinearRegression()
lr_model.fit(X,y)

# 展示a、b
a = lr_model.coef_
b = lr_model.intercept_

#打印系数a和截距b
print("斜率a",a)
print("截距b",b)


当y>=0.5时y=1

y<0.5时,y=0.

似乎y=0.1364x+0.5适用了。

但是线性回归的局限性也大

复制代码
import numpy as np
from sklearn.linear_model import LinearRegression
# 获取数据
x = np.array([-5, -4, -3, -2, -1, 1, 2, 3, 4, 5,50])
X = x.reshape(-1, 1)
y = np.array([0,0,0,0,0,1,1,1,1,1,1])
# 寻找a、b(y = ax + b)
lr_model = LinearRegression()
lr_model.fit(X,y)

# 展示a、b
a = lr_model.coef_
b = lr_model.intercept_

#打印系数a和截距b
print("斜率a",a)
print("截距b",b)

当x=1时代入方程式。结果发现y=0.49<0.5.所以y=0.错了

因此不能用线性回归

用逻辑回归

2.2、二分类问题逻辑回归



相关推荐
过期动态2 小时前
【动手学深度学习】卷积神经网络(CNN)入门
人工智能·python·深度学习·pycharm·cnn·numpy
蔗理苦5 小时前
2025-04-05 吴恩达机器学习5——逻辑回归(2):过拟合与正则化
人工智能·python·机器学习·逻辑回归
程序猿阿伟6 小时前
《SQL赋能人工智能:解锁特征工程的隐秘力量》
数据库·人工智能·sql
csssnxy6 小时前
叁仟数智指路机器人是否支持远程监控和管理?
大数据·人工智能
车斗7 小时前
win10 笔记本电脑安装 pytorch+cuda+gpu 大模型开发环境过程记录
人工智能·pytorch·电脑
KY_chenzhao7 小时前
数据驱动防灾:AI 大模型在地质灾害应急决策中的关键作用。基于DeepSeek/ChatGPT的AI智能体开发
人工智能·chatgpt·智能体·deepseek·本地化部署
大多_C7 小时前
量化方法分类
人工智能·分类·数据挖掘
www_pp_7 小时前
# 基于 OpenCV 的人脸识别实战:从基础到进阶
人工智能·opencv·计算机视觉
三月七(爱看动漫的程序员)8 小时前
LLM面试题六
数据库·人工智能·gpt·语言模型·自然语言处理·llama·milvus
蹦蹦跳跳真可爱5899 小时前
Python----计算机视觉处理(Opencv:道路检测之车道线拟合)
开发语言·人工智能·python·opencv·计算机视觉