ai-3、机器学习之逻辑回归

机器学习之逻辑回归

1、分类问题


分类问题常用的算法:逻辑回归





y=0 :垃圾邮件

y=1:正常邮件

准确来说是分类任务与线性回归任务的区别

2、逻辑回归

2.1、二分类问题线性回归



分类任务可以尝试建立线性回归模型,找出y=ax+b的函数表达式

已知10个点建立线性回归模型

(-5,0) (-4,0) (-3,0) (-2,0) (-1,0)

(1,1) (2,1) (3,1) (4,1) (5,1)

复制代码
import numpy as np
from sklearn.linear_model import LinearRegression
# 获取数据
x = np.array([-5, -4, -3, -2, -1, 1, 2, 3, 4, 5])
X = x.reshape(-1, 1)
y = np.array([0,0,0,0,0,1,1,1,1,1])
# 寻找a、b(y = ax + b)
lr_model = LinearRegression()
lr_model.fit(X,y)

# 展示a、b
a = lr_model.coef_
b = lr_model.intercept_

#打印系数a和截距b
print("斜率a",a)
print("截距b",b)


当y>=0.5时y=1

y<0.5时,y=0.

似乎y=0.1364x+0.5适用了。

但是线性回归的局限性也大

复制代码
import numpy as np
from sklearn.linear_model import LinearRegression
# 获取数据
x = np.array([-5, -4, -3, -2, -1, 1, 2, 3, 4, 5,50])
X = x.reshape(-1, 1)
y = np.array([0,0,0,0,0,1,1,1,1,1,1])
# 寻找a、b(y = ax + b)
lr_model = LinearRegression()
lr_model.fit(X,y)

# 展示a、b
a = lr_model.coef_
b = lr_model.intercept_

#打印系数a和截距b
print("斜率a",a)
print("截距b",b)

当x=1时代入方程式。结果发现y=0.49<0.5.所以y=0.错了

因此不能用线性回归

用逻辑回归

2.2、二分类问题逻辑回归



相关推荐
丁先生qaq3 分钟前
热成像实例分割电力设备数据集(3类,838张)
人工智能·计算机视觉·目标跟踪·数据集
红衣小蛇妖24 分钟前
神经网络-Day45
人工智能·深度学习·神经网络
KKKlucifer41 分钟前
当AI遇上防火墙:新一代智能安全解决方案全景解析
人工智能
DisonTangor1 小时前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc
浠寒AI3 小时前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python
weixin_505154463 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
Best_Me073 小时前
深度学习模块缝合
人工智能·深度学习
YuTaoShao4 小时前
【论文阅读】YOLOv8在单目下视多车目标检测中的应用
人工智能·yolo·目标检测
算家计算4 小时前
字节开源代码模型——Seed-Coder 本地部署教程,模型自驱动数据筛选,让每行代码都精准落位!
人工智能·开源
伪_装4 小时前
大语言模型(LLM)面试问题集
人工智能·语言模型·自然语言处理