ai-3、机器学习之逻辑回归

机器学习之逻辑回归

1、分类问题


分类问题常用的算法:逻辑回归





y=0 :垃圾邮件

y=1:正常邮件

准确来说是分类任务与线性回归任务的区别

2、逻辑回归

2.1、二分类问题线性回归



分类任务可以尝试建立线性回归模型,找出y=ax+b的函数表达式

已知10个点建立线性回归模型

(-5,0) (-4,0) (-3,0) (-2,0) (-1,0)

(1,1) (2,1) (3,1) (4,1) (5,1)

复制代码
import numpy as np
from sklearn.linear_model import LinearRegression
# 获取数据
x = np.array([-5, -4, -3, -2, -1, 1, 2, 3, 4, 5])
X = x.reshape(-1, 1)
y = np.array([0,0,0,0,0,1,1,1,1,1])
# 寻找a、b(y = ax + b)
lr_model = LinearRegression()
lr_model.fit(X,y)

# 展示a、b
a = lr_model.coef_
b = lr_model.intercept_

#打印系数a和截距b
print("斜率a",a)
print("截距b",b)


当y>=0.5时y=1

y<0.5时,y=0.

似乎y=0.1364x+0.5适用了。

但是线性回归的局限性也大

复制代码
import numpy as np
from sklearn.linear_model import LinearRegression
# 获取数据
x = np.array([-5, -4, -3, -2, -1, 1, 2, 3, 4, 5,50])
X = x.reshape(-1, 1)
y = np.array([0,0,0,0,0,1,1,1,1,1,1])
# 寻找a、b(y = ax + b)
lr_model = LinearRegression()
lr_model.fit(X,y)

# 展示a、b
a = lr_model.coef_
b = lr_model.intercept_

#打印系数a和截距b
print("斜率a",a)
print("截距b",b)

当x=1时代入方程式。结果发现y=0.49<0.5.所以y=0.错了

因此不能用线性回归

用逻辑回归

2.2、二分类问题逻辑回归



相关推荐
那雨倾城1 小时前
使用 OpenCV 将图像中标记特定颜色区域
人工智能·python·opencv·计算机视觉·视觉检测
whoarethenext1 小时前
c/c++的opencv的图像预处理讲解
人工智能·opencv·计算机视觉·预处理
金融小师妹2 小时前
应用BERT-GCN跨模态情绪分析:贸易缓和与金价波动的AI归因
大数据·人工智能·算法
武子康2 小时前
大语言模型 10 - 从0开始训练GPT 0.25B参数量 补充知识之模型架构 MoE、ReLU、FFN、MixFFN
大数据·人工智能·gpt·ai·语言模型·自然语言处理
广州智造2 小时前
OptiStruct实例:3D实体转子分析
数据库·人工智能·算法·机器学习·数学建模·3d·性能优化
jndingxin3 小时前
OpenCV CUDA模块中矩阵操作------降维操作
人工智能·opencv
MARS_AI_4 小时前
智能呼叫系统中的NLP意图理解:核心技术解析与实战
人工智能·自然语言处理·nlp·交互·信息与通信
Trent19854 小时前
影楼精修-肤色统一算法解析
图像处理·人工智能·算法·计算机视觉
Blossom.1186 小时前
使用Python实现简单的人工智能聊天机器人
开发语言·人工智能·python·低代码·数据挖掘·机器人·云计算