ai-3、机器学习之逻辑回归

机器学习之逻辑回归

1、分类问题


分类问题常用的算法:逻辑回归





y=0 :垃圾邮件

y=1:正常邮件

准确来说是分类任务与线性回归任务的区别

2、逻辑回归

2.1、二分类问题线性回归



分类任务可以尝试建立线性回归模型,找出y=ax+b的函数表达式

已知10个点建立线性回归模型

(-5,0) (-4,0) (-3,0) (-2,0) (-1,0)

(1,1) (2,1) (3,1) (4,1) (5,1)

复制代码
import numpy as np
from sklearn.linear_model import LinearRegression
# 获取数据
x = np.array([-5, -4, -3, -2, -1, 1, 2, 3, 4, 5])
X = x.reshape(-1, 1)
y = np.array([0,0,0,0,0,1,1,1,1,1])
# 寻找a、b(y = ax + b)
lr_model = LinearRegression()
lr_model.fit(X,y)

# 展示a、b
a = lr_model.coef_
b = lr_model.intercept_

#打印系数a和截距b
print("斜率a",a)
print("截距b",b)


当y>=0.5时y=1

y<0.5时,y=0.

似乎y=0.1364x+0.5适用了。

但是线性回归的局限性也大

复制代码
import numpy as np
from sklearn.linear_model import LinearRegression
# 获取数据
x = np.array([-5, -4, -3, -2, -1, 1, 2, 3, 4, 5,50])
X = x.reshape(-1, 1)
y = np.array([0,0,0,0,0,1,1,1,1,1,1])
# 寻找a、b(y = ax + b)
lr_model = LinearRegression()
lr_model.fit(X,y)

# 展示a、b
a = lr_model.coef_
b = lr_model.intercept_

#打印系数a和截距b
print("斜率a",a)
print("截距b",b)

当x=1时代入方程式。结果发现y=0.49<0.5.所以y=0.错了

因此不能用线性回归

用逻辑回归

2.2、二分类问题逻辑回归



相关推荐
ASKED_20193 小时前
End-To-End之于推荐: Meta GRs & HSTU 生成式推荐革命之作
人工智能
liulanba3 小时前
AI Agent技术完整指南 第一部分:基础理论
数据库·人工智能·oracle
自动化代码美学3 小时前
【AI白皮书】AI应用运行时
人工智能
小CC吃豆子3 小时前
openGauss :核心定位 + 核心优势 + 适用场景
人工智能
一瞬祈望3 小时前
⭐ 深度学习入门体系(第 7 篇): 什么是损失函数?
人工智能·深度学习·cnn·损失函数
徐小夕@趣谈前端3 小时前
15k star的开源项目 Next AI Draw.io:AI 加持下的图表绘制工具
人工智能·开源·draw.io
优爱蛋白3 小时前
MMP-9(20-469) His Tag 蛋白:高活性可溶性催化结构域的研究工具
人工智能·健康医疗
阿正的梦工坊3 小时前
Kronecker积详解
人工智能·深度学习·机器学习
Rui_Freely3 小时前
Vins-Fusion之ROS2(节点创建、订阅者、发布者)(一)
人工智能·计算机视觉
快降重3 小时前
投稿前的“精准体检”:自查查重,如何选择可靠的第三方工具?
人工智能·aigc·写作·降重·查重·降ai