ds回答-开源llm应用开发平台

以下是几个著名的开源 LLM 应用开发平台,涵盖不同场景和技术特点:


1. Dify

  • 特点:低代码 / 无代码开发、支持 RAG 检索、Agent 智能体、模型管理、LLMOps 全流程优化。
  • 核心功能:可视化工作流编排、数百种模型兼容(如 GPT、Llama3)、50+ 内置工具集成(谷歌搜索、DALL・E)。
  • 适用场景:企业级 AI 应用、私有化部署、复杂多模态任务。
  • 开源地址GitHub

2. Anything LLM

  • 特点:全栈 AI 应用框架,支持多用户、多模型、多文档管理。
  • 核心功能:工作区隔离上下文、自定义 Agent 工具(如网页浏览、代码执行)、多向量数据库兼容(Milvus、Chroma)。
  • 适用场景:企业知识库问答、多模态聊天机器人。
  • 开源地址GitHub

3. LibreChat

  • 特点:类 ChatGPT 界面,支持本地与远程模型混合部署。
  • 核心功能:多模型切换(Claude、GPT-4、Gemini)、图像分析、代码生成、多语言支持。
  • 适用场景:个人 / 企业私有 ChatGPT 替代品。
  • 开源地址GitHub

4. LazyLLM(商汤)

  • 特点:低代码开发,以数据流为核心的 AI 应用框架。
  • 核心功能:10 行代码构建 RAG 应用、支持复杂 Agent 流程(分支、循环)、一键部署到网页 / 企业微信。
  • 适用场景:快速原型开发、企业知识库定制。
  • 开源地址GitHub

5. Open WebUI(Ollama WebUI)

  • 特点:离线优先,支持 Ollama 和本地模型。
  • 核心功能:多模型对话、RAG 本地集成、代码高亮、语音交互。
  • 适用场景:完全私有化部署、离线 AI 服务。
  • 开源地址GitHub

6. Text Generation WebUI

  • 特点:基于 Gradio 的轻量化界面,支持多后端模型。
  • 核心功能:兼容 OpenAI API、LoRA 微调工具、多聊天模式(指令 / 对话)。
  • 适用场景:学术研究、快速模型测试。
  • 开源地址GitHub

选择建议:

  • 企业级需求:优先 Dify、LazyLLM(低代码)或 Anything LLM(多用户管理)。
  • 私有部署:LibreChat、Open WebUI(离线)。
  • 技术探索:Text Generation WebUI(灵活调试)。
相关推荐
ITZHIHONH39 分钟前
DeerFlow多智能体项目分析-通过LangGraph实现工作流的源码解析
ai·开源·agent·ai编程
格林威11 小时前
AOI在传统汽车制造领域中的应用
大数据·人工智能·数码相机·计算机视觉·ai·制造·aoi
熊猫钓鱼>_>14 小时前
仓颉语言:智能应用开发的新范式
ai·typescript·多模态·仓颉·cangjie·智能推荐系统·强类型
阿里-于怀15 小时前
行业首发!Spring AI Alibaba + Nacos 支持分布式 Multi-Agent 构建
人工智能·分布式·ai·nacos·saa·multi agent
优秘UMI18 小时前
智能科技的附加特性:提升用户体验的多样选择
python·科技·其他·ai
哥布林学者19 小时前
吴恩达深度学习课程二: 改善深层神经网络 第一周:深度学习的实践(二)
深度学习·ai
程序员鱼皮21 小时前
1分钟对接500个大模型?这才叫 AI 开发!
计算机·ai·程序员·大模型·软件开发
广州明周科技1 天前
Revit 200+新功能之“房间面积图表”,房间数据可视化功能,轻松洞察项目空间信息!
ai·信息可视化·数据分析·bim·revit二次开发·revit·deepseek
ExperDot1 天前
20 个追求极致体验的 AI 聊天软件功能
ai
王哈哈^_^1 天前
【数据集】【YOLO】【目标检测】口罩数据集,口罩佩戴识别数据集 1971 张,YOLO佩戴口罩检测算法实战训练教程。
人工智能·算法·yolo·目标检测·计算机视觉·ai·视觉检测