ds回答-开源llm应用开发平台

以下是几个著名的开源 LLM 应用开发平台,涵盖不同场景和技术特点:


1. Dify

  • 特点:低代码 / 无代码开发、支持 RAG 检索、Agent 智能体、模型管理、LLMOps 全流程优化。
  • 核心功能:可视化工作流编排、数百种模型兼容(如 GPT、Llama3)、50+ 内置工具集成(谷歌搜索、DALL・E)。
  • 适用场景:企业级 AI 应用、私有化部署、复杂多模态任务。
  • 开源地址GitHub

2. Anything LLM

  • 特点:全栈 AI 应用框架,支持多用户、多模型、多文档管理。
  • 核心功能:工作区隔离上下文、自定义 Agent 工具(如网页浏览、代码执行)、多向量数据库兼容(Milvus、Chroma)。
  • 适用场景:企业知识库问答、多模态聊天机器人。
  • 开源地址GitHub

3. LibreChat

  • 特点:类 ChatGPT 界面,支持本地与远程模型混合部署。
  • 核心功能:多模型切换(Claude、GPT-4、Gemini)、图像分析、代码生成、多语言支持。
  • 适用场景:个人 / 企业私有 ChatGPT 替代品。
  • 开源地址GitHub

4. LazyLLM(商汤)

  • 特点:低代码开发,以数据流为核心的 AI 应用框架。
  • 核心功能:10 行代码构建 RAG 应用、支持复杂 Agent 流程(分支、循环)、一键部署到网页 / 企业微信。
  • 适用场景:快速原型开发、企业知识库定制。
  • 开源地址GitHub

5. Open WebUI(Ollama WebUI)

  • 特点:离线优先,支持 Ollama 和本地模型。
  • 核心功能:多模型对话、RAG 本地集成、代码高亮、语音交互。
  • 适用场景:完全私有化部署、离线 AI 服务。
  • 开源地址GitHub

6. Text Generation WebUI

  • 特点:基于 Gradio 的轻量化界面,支持多后端模型。
  • 核心功能:兼容 OpenAI API、LoRA 微调工具、多聊天模式(指令 / 对话)。
  • 适用场景:学术研究、快速模型测试。
  • 开源地址GitHub

选择建议:

  • 企业级需求:优先 Dify、LazyLLM(低代码)或 Anything LLM(多用户管理)。
  • 私有部署:LibreChat、Open WebUI(离线)。
  • 技术探索:Text Generation WebUI(灵活调试)。
相关推荐
GEM的左耳返6 小时前
互联网大厂Java面试:微服务与AI技术深度交锋
spring cloud·ai·微服务架构·java面试·rag技术
姜 萌@cnblogs10 小时前
Saga Reader 0.9.9 版本亮点:深入解析核心新功能实现
前端·ai·rust
奋进的孤狼14 小时前
【Spring AI】阿里云DashScope灵积模型
人工智能·spring·阿里云·ai·云计算
哥不是小萝莉1 天前
CocoIndex实现AI数据语义检索
ai·cocoindex
charlee441 天前
PandasAI连接LLM进行智能数据分析
ai·数据分析·llm·pandasai·deepseek
九河云1 天前
从 “制造” 到 “智造”:中国制造业数字化转型的突围之路
科技·ai·制造·数字化转型·传统
yeshan3331 天前
使用 Claude Code 的自定义 Sub Agent 完善博文写作体验
ai·github·agent·claudecode
戴维-davy1 天前
什么?智能体生成智能体?自我进化?
ai·agent·智能体
守城小轩1 天前
从零开始学习Dify-数据库数据可视化(五)
ai·ai客服·ai浏览器
YXWik62 天前
Linux(centos7)安装 docker + ollama+ deepseek-r1:7b + Open WebUI(内含一键安装脚本)
linux·docker·ai