ds回答-开源llm应用开发平台

以下是几个著名的开源 LLM 应用开发平台,涵盖不同场景和技术特点:


1. Dify

  • 特点:低代码 / 无代码开发、支持 RAG 检索、Agent 智能体、模型管理、LLMOps 全流程优化。
  • 核心功能:可视化工作流编排、数百种模型兼容(如 GPT、Llama3)、50+ 内置工具集成(谷歌搜索、DALL・E)。
  • 适用场景:企业级 AI 应用、私有化部署、复杂多模态任务。
  • 开源地址GitHub

2. Anything LLM

  • 特点:全栈 AI 应用框架,支持多用户、多模型、多文档管理。
  • 核心功能:工作区隔离上下文、自定义 Agent 工具(如网页浏览、代码执行)、多向量数据库兼容(Milvus、Chroma)。
  • 适用场景:企业知识库问答、多模态聊天机器人。
  • 开源地址GitHub

3. LibreChat

  • 特点:类 ChatGPT 界面,支持本地与远程模型混合部署。
  • 核心功能:多模型切换(Claude、GPT-4、Gemini)、图像分析、代码生成、多语言支持。
  • 适用场景:个人 / 企业私有 ChatGPT 替代品。
  • 开源地址GitHub

4. LazyLLM(商汤)

  • 特点:低代码开发,以数据流为核心的 AI 应用框架。
  • 核心功能:10 行代码构建 RAG 应用、支持复杂 Agent 流程(分支、循环)、一键部署到网页 / 企业微信。
  • 适用场景:快速原型开发、企业知识库定制。
  • 开源地址GitHub

5. Open WebUI(Ollama WebUI)

  • 特点:离线优先,支持 Ollama 和本地模型。
  • 核心功能:多模型对话、RAG 本地集成、代码高亮、语音交互。
  • 适用场景:完全私有化部署、离线 AI 服务。
  • 开源地址GitHub

6. Text Generation WebUI

  • 特点:基于 Gradio 的轻量化界面,支持多后端模型。
  • 核心功能:兼容 OpenAI API、LoRA 微调工具、多聊天模式(指令 / 对话)。
  • 适用场景:学术研究、快速模型测试。
  • 开源地址GitHub

选择建议:

  • 企业级需求:优先 Dify、LazyLLM(低代码)或 Anything LLM(多用户管理)。
  • 私有部署:LibreChat、Open WebUI(离线)。
  • 技术探索:Text Generation WebUI(灵活调试)。
相关推荐
武子康9 小时前
大语言模型 09 - 从0开始训练GPT 0.25B参数量 补充知识之数据集 Pretrain SFT RLHF
人工智能·gpt·ai·语言模型·自然语言处理
豌豆花下猫10 小时前
Python 潮流周刊#102:微软裁员 Faster CPython 团队(摘要)
后端·python·ai
zhz521410 小时前
AI数字人融合VR全景:开启未来营销与交互新篇章
人工智能·ai·交互·vr·ai编程·智能体
一叶茶10 小时前
VsCode和AI的前端使用体验:分别使用了Copilot、通义灵码、iflyCode和Trae
前端·vscode·gpt·ai·chatgpt·copilot·deepseek
小薛博客16 小时前
4、前后端联调文生文、文生图事件
java·ai
LucianaiB1 天前
使用GpuGeek高效完成LLaMA大模型微调:实践与心得分享
ai·llama·ai自动化·gpugeek
素雪风华1 天前
构建RAG混合开发---PythonAI+JavaEE+Vue.js前端的实践
java·vue.js·python·ai·语言模型·llms·qwen千问大模型
胡玉洋1 天前
从新手到高手:全面解析 AI 时代的「魔法咒语」——Prompt
人工智能·ai·prompt·transformer·协议
带刺的坐椅1 天前
SpringBoot3 使用 SolonMCP 开发 MCP
java·ai·springboot·solon·mcp
幸福清风1 天前
【Liblib】基于LiblibAI自定义模型,总结一下Python开发步骤
ai·大模型·图片·liblib