基于KTransformers部署DeepSeek-R1满血版的详细教程

基于KTransformers部署DeepSeek-R1满血版的详细教程

一、环境准备

1. 硬件与系统要求
  • 最低配置
    • GPU:RTX 4090(24GB显存)或更高
    • CPU:支持AMX指令集的Intel至强3代及以上(如Xeon Gold 6240R)
    • 内存:382GB DDR5(推荐512GB)
    • 系统:Ubuntu 22.04 LTS或CentOS 7
2. 基础依赖安装
bash 复制代码
# 更新系统软件源(建议配置阿里云镜像)
sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak
sudo sed -i 's/archive.ubuntu.com/mirrors.aliyun.com/g' /etc/apt/sources.list
sudo apt update &&& sudo apt install -y vim build-essential git

安装CUDA 12.1+和对应驱动



wget https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run
sudo sh cuda_12.1.0_530.30.02_linux.run --silent --toolkit



创建Python 3.10虚拟环境



conda create -n kt python=3.10 -y
conda activate kt
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121`conda create -n kt python=3.10 -y
conda activate kt
pip install torch torchvision torchaudio --index-url `https://link.juejin.cn?target=https%3A%2F%2Fdownload.pytorch.org%2Fwhl%2Fcu121

二、模型下载与准备

1. 下载量化版模型
  • 推荐模型DeepSeek-R1-Q4_K_M(377GB量化版)
bash 复制代码
# 通过HuggingFace下载(需学术加速)
pip install huggingface_hub hf_transfer
huggingface-cli download unsloth/deepseek-r1-gguf --include "deepseek-r1-q4_k_m/*" --local-dir ./deepseek-r1-gguf

或从魔塔社区下载(国内加速)



pip install modelscope
from modelscope import snapshot_download
snapshot_download("unsloth/DeepSeek-R1-GGUF", local_dir="deepseek-r1-gguf", allow_patterns=["Q4_K_M"])`pip install modelscope
from modelscope import snapshot_download
snapshot_download("unsloth/DeepSeek-R1-GGUF", local_dir="deepseek-r1-gguf", allow_patterns=["`Q4_K_M`"])`
2. 下载原始配置文件
bash 复制代码
git clone https://huggingface.co/deepseek-ai/deepseek-r1
# 仅保留config.json、tokenizer.model等文件,删除.safetensors权重文件

三、KTransformers框架部署

1. 源码编译安装
bash 复制代码
git clone --recursive https://github.com/kvcache-ai/ktransformers
cd ktransformers

解决常见编译问题



conda install -c conda-forge libstdcxx-ng  # 修复GLIBCXX依赖
git submodule update --init --recursive  # 确保third_party子模块完整



安装依赖



pip install -r requirements.txt
python setup.py install`pip install -r requirements.txt
python setup.py install`
2. 验证安装
bash 复制代码
python -c "import ktransformers; print(ktransformers.__version__)"
# 输出应为类似v0.2.0版本

四、启动推理服务

1. 启动命令
bash 复制代码
python -m ktransformers.local_chat \
  --model_path ./deepseek-r1 \          # 配置文件目录
  --gguf_path ./deepseek-r1-gguf \      # 量化模型目录
  --port 9112                           # 服务端口
2. 启动注意事项
  • 显存占用:约14GB(RTX 4090)
  • 内存占用:首次加载需382GB,启动时间约15-30分钟
  • 常见错误
    • CPU不支持AMX指令集:更换至Intel至强3代及以上CPU
    • 模型输出乱码 :确认使用Q4_K_M而非实验性量化版本(如iq1_s

五、测试与验证

bash 复制代码
curl -X POST http://localhost:9112/generate \
  -H "Content-Type: application/json" \
  -d '{"prompt": "如何部署千亿大模型?", "max_length": 200}'

正常响应应包含连贯文本及generated_text字段。


附:关键文档参考

相关推荐
啥都生5 小时前
Claude和GPT新模型撞车发布。。。
人工智能
Katecat996635 小时前
蚊子幼虫与蛹的自动检测与分类-VFNet_R101_FPN_MS-2x_COCO实现详解
人工智能·数据挖掘
云空5 小时前
日常高频英语口语实用表达播客
人工智能·机器人
愚公搬代码5 小时前
【愚公系列】《AI短视频创作一本通》020-AI短视频创作实例精解(文旅宣传AI短视频实例精解)
人工智能·音视频
叶庭云5 小时前
GitCode 与 GitHub 平台能力深度对比:聚焦于 AI 辅助开发与 Agent 自动化能力
人工智能·github·gitcode·源代码托管平台·ai 辅助开发·agent 自动化能力·易用性
【赫兹威客】浩哥5 小时前
农作物病虫害检测数据集分享及多版本YOLO模型训练验证
人工智能·计算机视觉·目标跟踪
WK-Q5 小时前
【论文解读】Transformers are RNNs
人工智能·语言模型·大模型·线性注意力
啊阿狸不会拉杆5 小时前
《机器学习导论》第 10 章-线性判别式
人工智能·python·算法·机器学习·numpy·lda·线性判别式
爱打代码的小林5 小时前
基于 OpenCV 与 Dlib 的人脸替换
人工智能·opencv·计算机视觉