基于KTransformers部署DeepSeek-R1满血版的详细教程

基于KTransformers部署DeepSeek-R1满血版的详细教程

一、环境准备

1. 硬件与系统要求
  • 最低配置
    • GPU:RTX 4090(24GB显存)或更高
    • CPU:支持AMX指令集的Intel至强3代及以上(如Xeon Gold 6240R)
    • 内存:382GB DDR5(推荐512GB)
    • 系统:Ubuntu 22.04 LTS或CentOS 7
2. 基础依赖安装
bash 复制代码
# 更新系统软件源(建议配置阿里云镜像)
sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak
sudo sed -i 's/archive.ubuntu.com/mirrors.aliyun.com/g' /etc/apt/sources.list
sudo apt update &&& sudo apt install -y vim build-essential git

安装CUDA 12.1+和对应驱动



wget https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run
sudo sh cuda_12.1.0_530.30.02_linux.run --silent --toolkit



创建Python 3.10虚拟环境



conda create -n kt python=3.10 -y
conda activate kt
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121`conda create -n kt python=3.10 -y
conda activate kt
pip install torch torchvision torchaudio --index-url `https://link.juejin.cn?target=https%3A%2F%2Fdownload.pytorch.org%2Fwhl%2Fcu121

二、模型下载与准备

1. 下载量化版模型
  • 推荐模型DeepSeek-R1-Q4_K_M(377GB量化版)
bash 复制代码
# 通过HuggingFace下载(需学术加速)
pip install huggingface_hub hf_transfer
huggingface-cli download unsloth/deepseek-r1-gguf --include "deepseek-r1-q4_k_m/*" --local-dir ./deepseek-r1-gguf

或从魔塔社区下载(国内加速)



pip install modelscope
from modelscope import snapshot_download
snapshot_download("unsloth/DeepSeek-R1-GGUF", local_dir="deepseek-r1-gguf", allow_patterns=["Q4_K_M"])`pip install modelscope
from modelscope import snapshot_download
snapshot_download("unsloth/DeepSeek-R1-GGUF", local_dir="deepseek-r1-gguf", allow_patterns=["`Q4_K_M`"])`
2. 下载原始配置文件
bash 复制代码
git clone https://huggingface.co/deepseek-ai/deepseek-r1
# 仅保留config.json、tokenizer.model等文件,删除.safetensors权重文件

三、KTransformers框架部署

1. 源码编译安装
bash 复制代码
git clone --recursive https://github.com/kvcache-ai/ktransformers
cd ktransformers

解决常见编译问题



conda install -c conda-forge libstdcxx-ng  # 修复GLIBCXX依赖
git submodule update --init --recursive  # 确保third_party子模块完整



安装依赖



pip install -r requirements.txt
python setup.py install`pip install -r requirements.txt
python setup.py install`
2. 验证安装
bash 复制代码
python -c "import ktransformers; print(ktransformers.__version__)"
# 输出应为类似v0.2.0版本

四、启动推理服务

1. 启动命令
bash 复制代码
python -m ktransformers.local_chat \
  --model_path ./deepseek-r1 \          # 配置文件目录
  --gguf_path ./deepseek-r1-gguf \      # 量化模型目录
  --port 9112                           # 服务端口
2. 启动注意事项
  • 显存占用:约14GB(RTX 4090)
  • 内存占用:首次加载需382GB,启动时间约15-30分钟
  • 常见错误
    • CPU不支持AMX指令集:更换至Intel至强3代及以上CPU
    • 模型输出乱码 :确认使用Q4_K_M而非实验性量化版本(如iq1_s

五、测试与验证

bash 复制代码
curl -X POST http://localhost:9112/generate \
  -H "Content-Type: application/json" \
  -d '{"prompt": "如何部署千亿大模型?", "max_length": 200}'

正常响应应包含连贯文本及generated_text字段。


附:关键文档参考

相关推荐
winfredzhang20 分钟前
Deepseek 生成新玩法:从文本到可下载 Word 文档?思路与实践
人工智能·word·deepseek
KY_chenzhao1 小时前
ChatGPT与DeepSeek在科研论文撰写中的整体科研流程与案例解析
人工智能·机器学习·chatgpt·论文·科研·deepseek
不爱吃于先生1 小时前
生成对抗网络(Generative Adversarial Nets,GAN)
人工智能·神经网络·生成对抗网络
cxr8281 小时前
基于Playwright的浏览器自动化MCP服务
人工智能·自动化·大语言模型·mcp
PPIO派欧云1 小时前
PPIO X OWL:一键开启任务自动化的高效革命
运维·人工智能·自动化·github·api·教程·ppio派欧云
奋斗者1号1 小时前
数值数据标准化:机器学习中的关键预处理技术
人工智能·机器学习
kyle~2 小时前
深度学习---框架流程
人工智能·深度学习
miracletiger2 小时前
uv 新的包管理工具总结
linux·人工智能·python
视觉AI2 小时前
SiamMask原理详解:从SiamFC到SiamRPN++,再到多任务分支设计
人工智能·目标检测·计算机视觉·目标分割
视觉&物联智能2 小时前
【杂谈】-人工智能驱动的网络安全威胁:新一代网络钓鱼
网络·人工智能·web安全·网络安全·安全威胁分析