人工智能100问☞第46问:AI是如何“学习”的?

目录

一、通俗解释

二、专业解析

三、权威参考


AI的学习是​​数学优化过程​​,其智能源于模型对数据规律的统计归纳能力,而非人类的主观意识。当前技术仍依赖高质量数据与算法设计,离"自主思考"尚有距离。

一、通俗解释

​​AI学习就像教小孩认东西,但用的是"数据教材"和"数学大脑"​​

​​1、喂数据当教材​​

想教AI认猫?先给它看10万张猫狗照片(带标签),就像给小孩看识字卡片。

现实应用:抖音推荐你爱看的视频,就是因为"喂"过大量用户行为数据。

​​2、自己找规律​​

AI用"算法大脑"分析照片:猫耳朵尖、狗脸长... 类似小孩总结"有翅膀的是鸟"。

关键突破:深度学习能自动发现特征(如猫胡须纹理),无需人工教。

​​3、从错误中进步​​

若AI把柴犬认成猫,系统会数学惩罚它,逼它调整判断标准,类似小孩认错字被纠正。

优化机制:通过"反向传播"算法,像考试后复盘错题一样更新脑回路。

​​4、终极目标:举一反三​​

训练好的AI见到陌生品种猫也能识别,但若遇到"穿毛衣的猫"可能翻车------这是当前难点。

二、专业解析

AI学习本质是:通过数据驱动模型参数优化,实现输入到输出的泛化映射​​

1 、数据层处理(学习基础)

步骤 技术方法 作用
数据清洗 缺失值填充/异常值剔除 提升数据质量
特征工程 PCA降维/Embedding嵌入 提取关键信息
数据增强 图像旋转/文本替换 扩充样本多样性

2 、算法层训练(学习引擎)

​​ (1 )监督学习(带答案学习)​​

原理:最小化预测值与标签的损失函数(如交叉熵)

示例:医疗影像诊断(输入CT图→输出肿瘤位置)

​​ (2 )无监督学习(自主发现)​​

原理:聚类数据内在结构(如K-means)或降维表征(如AutoEncoder)

示例:用户行为分组,实现精准营销

​​ (3 )强化学习(试错优化)​​

原理:马尔可夫决策过程(MDP)+ 奖励函数引导

示例:AlphaGo自我对弈3000万局提升棋力

3 、模型层优化(学习进化)

​​反向传播​​:通过梯度下降算法逐层调整神经网络权重(如ResNet残差连接解决梯度消失)

​​注意力机制​​:动态聚焦关键数据区域(如Transformer在GPT-4中的应用)

​​联邦学习​​:跨设备协同训练(如手机输入法词库更新不泄露隐私)

三、权威参考

1、吴剑明(人工智能专家)​​:

现在欧美、日本,包括我们中国的学术界都对深度学习非常关注,深度学习的威力目前在语音识别和图像识别上得到了很好的验证。不过在自然对话、自我进化机器人等人工智能更高深的领域里,它的效果还有待进一步考察。

2、龚克教授(信创海河实验室主任、中国新一代人工智能发展战略研究院执行院长

机器学习是指通过数据训练模型,使计算机能够从数据中学习规律并做出预测或决策。

3、约翰·麦卡锡(人工智能之父)

制造智能机器的科学与工程。

相关推荐
摘取一颗天上星️13 分钟前
端到端记忆网络 vs 神经图灵机:外部记忆的两种哲学之争
网络·人工智能·深度学习·机器学习·lstm·外部记忆
vlln20 分钟前
【论文解读】rStar:用互洽方法增强 SLM(小型语言模型) 推理能力
人工智能·深度学习·语言模型·自然语言处理·transformer
哆啦A梦的口袋呀20 分钟前
基于Python学习《Head First设计模式》第十一章 代理模式
学习·设计模式·代理模式
CoderJia程序员甲41 分钟前
awesome-llm-apps 项目带你探索语言模型的无限可能
人工智能·ai·语言模型·自然语言处理
我不是小upper43 分钟前
PDF转Markdown基准测试
图像处理·人工智能·markdown·marker·docling
Samesky0011 小时前
Oracle数据库学习笔记 - 创建、备份和恢复
数据库·学习·oracle
家庭云计算专家1 小时前
ONLYOFFICE 的AI技巧-1.集成OCR、文本转图像、电子表格集成等新功能
人工智能·ocr·onlyoffice·协作空间
倔强青铜三1 小时前
Python相对导入的终极翻车现场:为啥你的代码总报错?
人工智能·python·面试
待什么青丝2 小时前
【linux】驱动学习问题及解决方法
linux·数据库·学习
whaosoft-1432 小时前
51c大模型~合集139
人工智能