本地大模型搭建与webui交互

本地大模型搭建与webui交互

概述

本文档记录如何通过以下步骤快速搭建本地模型服务:

  1. 使用 Ollama 客户端部署本地模型
  2. 通过 Docker 部署 WebUI 界面
  3. 实现浏览器交互式访问

环境准备

  • 支持 Docker 的操作系统(Windows/macOS/Linux)
  • 已安装 Ollama 客户端
  • 已安装 Docker(这里如果可以的话,我个人建议使用DockerDesktop,这样更加直观)

操作步骤

1. 安装 Ollama 客户端

  1. 访问 Ollama 官网 下载对应系统的客户端
  2. 完成安装后,验证版本:
bash 复制代码
ollama --version
# 应输出类似:ollama version 0.5.11
运行态

ollama下载后打开就是一个后台运行程序,无任何交互页面,但是你在后台进程里面能够看到他,就说明正常运行了。(第一次双击打开,发现没啥反应请不用激动)

2. 模型操作

通过命令行直接拉取模型(以 deepseek 为例):

复制代码
 ollama pull deepseek-r1:14b

运行模型:

复制代码
ollama run deepseek-r1:14b

查看模型集合

复制代码
ollama list

是的,就是这么简单。整个模型的操作就是这么几步,但是与其考虑这个,不如考虑一下,你的适用场景,能拉什么模型?

3.模型选择

我们以标准的32G电脑内存为例:如果你是程序员,且主要功能是用于做代码开发的(苦于openAI的外网和deepSeek的网络问题,你可以尝试本地拉着先玩玩。但实际上,哪怕我拉了32b的还是不太智能,不如直接装个github copilot)

模型推荐(基于 32GB 内存)

ollama的标准模型地址:

https://ollama.com/search

顺带看一下 顶配671b

我不知道他多大,但是可以用我本地的对比一下

1. 代码开发场景

模型名称 推荐理由 内存占用
CodeLLaMA 专为代码生成优化,支持多种编程语言(Python、Java、C++ 等) ~16GB
StarCoder 高性能代码生成模型,适合大型项目开发 ~20GB
WizardCoder 基于 CodeLLaMA 微调,代码生成质量更高 ~18GB

2. 通用开发场景

模型名称 推荐理由 内存占用
LLaMA 2 通用性强,适合文档生成、代码解释、问题解答等 ~20GB
Mistral 高性能通用模型,推理速度快,适合日常开发辅助 ~16GB
Falcon 轻量级通用模型,适合快速原型开发和实验 ~12GB

3. 多模态场景

模型名称 推荐理由 内存占用
LLaVA 支持图像和文本交互,适合需要处理多模态数据的开发场景 ~24GB
MiniGPT-4 轻量级多模态模型,适合图像描述、文档生成等任务 ~20GB

webui部署

事实上,你刚刚拉我就可以直接ollama run 对应的模型了,但问题是:这种交互方式极度不友好。

你不能贴图片解析,换行也不好换行

所以一般需要一个webui

镜像拉取

复制代码
docker pull ghcr.io/open-webui/open-webui:main

docker 运行(注意:关闭了OpenAI)

复制代码
docker run -d \
  --name ollama-webui \
  -p 3000:8080 \
  -e OLLAMA_API_BASE_URL=http://host.docker.internal:11434 \
  -e OPENAI_API_KEY=disabled \
  -e DISABLE_OPENAI=true \
  --add-host=host.docker.internal:host-gateway \
  ghcr.io/open-webui/open-webui:main

注意一下,我把OPENAI_API_KEY给关闭了,因为正常你不翻墙的话,他连接不了,就导致第一次打开很慢(你要等到他http超时,才往下去load本地模型)

运行效果图

创建你个人账号后,就可以进去了。(如果很慢的话,记得看一下你的本地docker日志,之前是因为他默认会连接openAI,外网无法访问,要等他http超时)


常见问题排查

模型无法加载

确认 Ollama 服务已运行:

复制代码
curl http://localhost:11434

检查模型是否下载完成:

复制代码
ollama list

WebUI 无法连接

验证容器网络配置:

复制代码
docker exec ollama-webui curl -v http://host.docker.internal:11434

检查防火墙设置是否放行 11434 和 3000 端口

相关推荐
Elastic 中国社区官方博客10 小时前
Elasticsearch 推理 API 增加了开放的可定制服务
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
AI360labs_atyun15 小时前
AI教育开启新篇章
人工智能·百度·ai
CoderJia程序员甲17 小时前
GitHub 热榜项目 - 日榜(2025-10-17)
ai·llm·github·开源项目·github热榜
Elastic 中国社区官方博客1 天前
根据用户行为数据中的判断列表在 Elasticsearch 中训练 LTR 模型
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
HyperAI超神经1 天前
AI预判等离子体「暴走」,MIT等基于机器学习实现小样本下的等离子体动力学高精度预测
人工智能·神经网络·机器学习·ai·强化学习·可控核聚变·托卡马克
尽兴-1 天前
【10 分钟!M4 Mac mini 离线部署「私有 ChatGPT」完整实录】
macos·ai·chatgpt·大模型·ollama·私有化
武子康1 天前
AI-调查研究-105-具身智能 机器人学习数据采集:从示范视频到状态-动作对的流程解析
人工智能·深度学习·机器学习·ai·系统架构·机器人·具身智能
同创永益1 天前
产品动态 | IStorm Copilot V1.1产品发布
ai·copilot·it·同创永益·数字韧性
GISer_Jing1 天前
LLM对话框项目技术栈&重难点总结
前端·ai·node.js
非晓为骁1 天前
AI-Native 能力反思(三):Prompt Engineering 自我提升神器
人工智能·ai·prompt·ai-native·提示词工程