机器学习(五)

一,多类(Multiclass)

多类是指输出不止有两个输出标签,想要对多个种类进行分类。

Softmax回归算法:

Softmax回归算法是Logistic回归在多类问题上的推广,和线性回归一样,将输入的特征与权重进行线性叠加,主要不同在于,Softmax回归的输出值个数取决于输入标签的类别的个数。

例:

一共输入有四种特征和三种输出类别,权重(W)包含12个标量,偏置(b)包含3个标量,对于每个输入标签进行线性叠加,得到3个输出:o1,o2,o3

进行Softmax回归:

2,Softmax函数:

对每个类别进行指数函数处理,然后归一化,使得所有类别的概率之和为1。当有n个类别时,可以通过公式来比较的值并输出

3,Softmax回归的损失函数:

损失函数和逻辑回归相似。

4,在人工神经网络的Softmax输出:

与逻辑回归不同,Softmax回归的输出函数与每个Z都有关系

对每一隐藏层的每个单元进行Softmax回归,产生的激活值传递给下一隐藏层,以此类推。

5,利用TensorFlow实现Softmax回归:

①:建立模型

②:定义代价函数和损失函数

③:训练数据得到最小代价函数

6,Softmax回归的改进:

原因:由于电脑计算的先后顺序不一样,可能会导致结果的偏差,(精度损失?),因此需要在计算中选择更合适的方法。

方法:张量流

张量流通过重新编排代价函数中的项,并提出一个更为精准的数值方法来计算代价函数,即选择是否计算a。

采用图中修改的代码进行计算,最后只会计算出Z。缺点是使得Softmax回归过程变得不是很清晰,张量流的数据减少。

(整个优化后的代码如上图所示)

相关推荐
Shawn_Shawn1 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
33三 三like3 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a3 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者4 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗4 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_5 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信5 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235865 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs5 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习