机器学习(五)

一,多类(Multiclass)

多类是指输出不止有两个输出标签,想要对多个种类进行分类。

Softmax回归算法:

Softmax回归算法是Logistic回归在多类问题上的推广,和线性回归一样,将输入的特征与权重进行线性叠加,主要不同在于,Softmax回归的输出值个数取决于输入标签的类别的个数。

例:

一共输入有四种特征和三种输出类别,权重(W)包含12个标量,偏置(b)包含3个标量,对于每个输入标签进行线性叠加,得到3个输出:o1,o2,o3

进行Softmax回归:

2,Softmax函数:

对每个类别进行指数函数处理,然后归一化,使得所有类别的概率之和为1。当有n个类别时,可以通过公式来比较的值并输出

3,Softmax回归的损失函数:

损失函数和逻辑回归相似。

4,在人工神经网络的Softmax输出:

与逻辑回归不同,Softmax回归的输出函数与每个Z都有关系

对每一隐藏层的每个单元进行Softmax回归,产生的激活值传递给下一隐藏层,以此类推。

5,利用TensorFlow实现Softmax回归:

①:建立模型

②:定义代价函数和损失函数

③:训练数据得到最小代价函数

6,Softmax回归的改进:

原因:由于电脑计算的先后顺序不一样,可能会导致结果的偏差,(精度损失?),因此需要在计算中选择更合适的方法。

方法:张量流

张量流通过重新编排代价函数中的项,并提出一个更为精准的数值方法来计算代价函数,即选择是否计算a。

采用图中修改的代码进行计算,最后只会计算出Z。缺点是使得Softmax回归过程变得不是很清晰,张量流的数据减少。

(整个优化后的代码如上图所示)

相关推荐
stephen one6 分钟前
2026 AI深度伪造危机:实测 Midjourney v7 与 Flux 2 Max 识别,谁才是 AI 检测的天花板?
人工智能·ai作画·stable diffusion·aigc·midjourney
卡奥斯开源社区官方7 分钟前
Claude 4.5技术深析:AI编码重构软件工程的底层逻辑与实践路径
人工智能·重构·软件工程
爱学英语的程序员17 分钟前
让AI 帮我做了个个人博客(附提示词!)
人工智能·git·vue·github·node·个人博客
lixzest25 分钟前
Transformer、PyTorch与人工智能大模型的关系
人工智能
其美杰布-富贵-李25 分钟前
PyTorch Lightning
人工智能·pytorch·python·training
SiYuanFeng27 分钟前
pytorch常用张量构造词句表和nn.组件速查表
人工智能·pytorch·python
MistaCloud27 分钟前
Pytorch深入浅出(十四)之完整的模型训练测试套路
人工智能·pytorch·python·深度学习
知乎的哥廷根数学学派28 分钟前
基于物理信息嵌入与多维度约束的深度学习地基承载力智能预测与可解释性评估算法(以模拟信号为例,Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习
WLJT12312312329 分钟前
电子元器件:智能时代的核心基石
大数据·人工智能·科技·安全·生活
RockHopper202537 分钟前
约束的力量:从生物认知到人工智能的跨越
人工智能·具身智能·具身认知