nn.Identity 单位矩阵,同一矩阵

文章目录

  • [1. 说明](#1. 说明)
  • [2. pytorch 代码](#2. pytorch 代码)

1. 说明

在搭建网络结构中,为了保证搭建的网络具有高度扩展性和后续调试模型框架,在保证整体结构完整情况下,用nn.Identity 进行占位符处理。

2. pytorch 代码

  • pytorch代码
python 复制代码
import torch
import torch.nn as nn

class MyModel(nn.Module):
    def __init__(self, use_dropout=True):
        super(MyModel, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 16, kernel_size=3, padding=1),
            nn.ReLU(),
            # 根据配置决定使用 Dropout 还是 Identity
            nn.Identity() if not use_dropout else nn.Dropout(p=0.5),
            nn.Conv2d(16, 32, kernel_size=3, padding=1),
            nn.ReLU(),
        )
        self.classifier = nn.Linear(32 * 32 * 32, 10)  # 假设输入图像尺寸为 32x32

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        return self.classifier(x)

# 实例化模型时选择是否使用 Dropout
model_with_dropout = MyModel(use_dropout=True)
model_without_dropout = MyModel(use_dropout=False)

# 测试模型输出形状
x = torch.randn(4, 3, 32, 32)
print("Output with dropout:", model_with_dropout(x).shape)
print("Output without dropout:", model_without_dropout(x).shape)
  • result
python 复制代码
Output with dropout: torch.Size([4, 10])
Output without dropout: torch.Size([4, 10])
相关推荐
All The Way North-7 小时前
彻底掌握 RNN(实战):PyTorch API 详解、多层RNN、参数解析与输入机制
pytorch·rnn·深度学习·循环神经网络·参数详解·api详解
童话名剑8 小时前
情感分类与词嵌入除偏(吴恩达深度学习笔记)
笔记·深度学习·分类
咋吃都不胖lyh9 小时前
CLIP 不是一个 “自主判断图像内容” 的图像分类模型,而是一个 “图文语义相似度匹配模型”—
人工智能·深度学习·机器学习
咚咚王者11 小时前
人工智能之核心技术 深度学习 第七章 扩散模型(Diffusion Models)
人工智能·深度学习
逄逄不是胖胖11 小时前
《动手学深度学习》-60translate实现
人工智能·python·深度学习
koo36412 小时前
pytorch深度学习笔记19
pytorch·笔记·深度学习
哥布林学者13 小时前
吴恩达深度学习课程五:自然语言处理 第三周:序列模型与注意力机制(三)注意力机制
深度学习·ai
A先生的AI之旅13 小时前
2026-1-30 LingBot-VA解读
人工智能·pytorch·python·深度学习·神经网络
Learn Beyond Limits13 小时前
文献阅读:A Probabilistic U-Net for Segmentation of Ambiguous Images
论文阅读·人工智能·深度学习·算法·机器学习·计算机视觉·ai
下午写HelloWorld14 小时前
差分隐私深度学习(DP-DL)简要理解
人工智能·深度学习