nn.Identity 单位矩阵,同一矩阵

文章目录

  • [1. 说明](#1. 说明)
  • [2. pytorch 代码](#2. pytorch 代码)

1. 说明

在搭建网络结构中,为了保证搭建的网络具有高度扩展性和后续调试模型框架,在保证整体结构完整情况下,用nn.Identity 进行占位符处理。

2. pytorch 代码

  • pytorch代码
python 复制代码
import torch
import torch.nn as nn

class MyModel(nn.Module):
    def __init__(self, use_dropout=True):
        super(MyModel, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 16, kernel_size=3, padding=1),
            nn.ReLU(),
            # 根据配置决定使用 Dropout 还是 Identity
            nn.Identity() if not use_dropout else nn.Dropout(p=0.5),
            nn.Conv2d(16, 32, kernel_size=3, padding=1),
            nn.ReLU(),
        )
        self.classifier = nn.Linear(32 * 32 * 32, 10)  # 假设输入图像尺寸为 32x32

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        return self.classifier(x)

# 实例化模型时选择是否使用 Dropout
model_with_dropout = MyModel(use_dropout=True)
model_without_dropout = MyModel(use_dropout=False)

# 测试模型输出形状
x = torch.randn(4, 3, 32, 32)
print("Output with dropout:", model_with_dropout(x).shape)
print("Output without dropout:", model_without_dropout(x).shape)
  • result
python 复制代码
Output with dropout: torch.Size([4, 10])
Output without dropout: torch.Size([4, 10])
相关推荐
饭饭大王6661 小时前
CANN 生态中的轻量化部署利器:`lite-inference` 项目实战解析
深度学习
MSTcheng.2 小时前
CANN ops-math:AI 硬件端高效数学运算的算子设计与工程化落地方法
人工智能·深度学习·cann
Dev7z2 小时前
基于深度学习的肺部听诊音疾病智能诊断方法研究
人工智能·深度学习
像风一样的男人@3 小时前
python --读取psd文件
开发语言·python·深度学习
大江东去浪淘尽千古风流人物3 小时前
【SLAM新范式】几何主导=》几何+学习+语义+高效表示的融合
深度学习·算法·slam
yuanyuan2o24 小时前
【深度学习】全连接、卷积神经网络
人工智能·深度学习·cnn
汗流浃背了吧,老弟!4 小时前
BPE 词表构建与编解码(英雄联盟-托儿索语料)
人工智能·深度学习
小瑞瑞acd5 小时前
【小瑞瑞精讲】卷积神经网络(CNN):从入门到精通,计算机如何“看”懂世界?
人工智能·python·深度学习·神经网络·机器学习
芷栀夏5 小时前
CANN ops-math:揭秘异构计算架构下数学算子的低延迟高吞吐优化逻辑
人工智能·深度学习·神经网络·cann
孤狼warrior5 小时前
YOLO目标检测 一千字解析yolo最初的摸样 模型下载,数据集构建及模型训练代码
人工智能·python·深度学习·算法·yolo·目标检测·目标跟踪