一、需求深度解析(需求分析篇)
1. 业务场景拆解
业务流程图(Mermaid流程图)
flowchart TD
A[应用注册节点] -->|提交节点元数据| B(规则引擎)
B --> C{执行流程}
C -->|同步调用| D[调用节点Notify URL]
C -->|异步调用| E[调用异步Monitor URL]
D --> F[等待返回结果]
E --> G[启动监控线程轮询]
G -->|获取最终结果| H[更新流程上下文]
F --> H
H --> I{检查下游连线条件}
I -->|条件满足| J[触发下一节点]
I -->|条件不满足| K[挂起当前流程]
K -->|超时/重试| C
J --> L[流程结束回调]
2. 核心功能需求清单
模块 | 功能点 |
---|---|
节点管理 | 1. 节点注册接口(REST API) 2. 节点元数据存储(名称/URL/参数定义) |
流程编排 | 1. 可视化流程配置 2. 条件表达式动态解析(支持上下文变量) |
执行引擎 | 1. 同步/异步执行器 2. 流程状态机管理 3. 上下文参数传递 |
异步监控 | 1. 轮询线程池管理 2. 回调结果处理 3. 超时熔断机制 |
生命周期管理 | 1. 流程实例持久化 2. 节点重试策略 3. 强制终止机制 |
3. 非功能需求分析
维度 | 具体要求 |
---|---|
性能 | 单流程实例延迟 ≤500ms(同步) 支持1000+并行流程实例 |
扩展性 | 可插拔的表达式引擎(支持Groovy/SpEL等) 分布式部署能力 |
可靠性 | 节点调用失败自动重试(3次策略) 流程状态自动持久化(Checkpoint机制) |
安全性 | 节点URL白名单校验 表达式执行沙箱隔离 |
4. 关键问题抽象
增强版类图设计
classDiagram
class Node {
+String nodeId
+String name
+URI notifyUrl
+URI asyncMonitorUrl
+Map> inputParams
+Map> outputParams
+boolean allowRetry
+validate() boolean
}
class Edge {
+String edgeId
+String conditionExpression
+Node sourceNode
+Node targetNode
+evaluate(Context context) boolean
}
class Workflow {
+String workflowId
+List~Node~ nodes
+List~Edge~ edges
+addNode(Node node)
+connect(Node source, Node target, String condition)
}
class WorkflowInstance {
+String instanceId
+Workflow workflow
+Map context
+State currentState
+persistState()
}
Node "1" *-- "0..*" Edge : source
Workflow "1" *-- "1..*" Node : contains
Workflow "1" *-- "1..*" Edge : contains
WorkflowInstance --> Workflow : executes
类职责说明
Node
:定义执行单元元数据,包含同步/异步调用方式、输入输出参数约束Edge
:封装流转逻辑,通过表达式引擎(如Spring EL)动态计算条件Workflow
:静态流程模板,维护节点与连线的拓扑关系WorkflowInstance
:动态流程实例,保存运行时上下文和状态
5. 典型问题场景
-
异步回调丢失问题
- 设计异步任务ID生成规则(雪花算法)
- 采用Redis存储任务状态+超时补偿机制
-
上下文污染问题
- 使用ThreadLocal隔离流程实例上下文
- 深拷贝技术保证参数传递安全
-
死循环检测
java// 环路检测算法示例 public class CycleDetector { public static boolean hasCycle(Workflow workflow) { Map<Node, Boolean> visited = new HashMap<>(); for (Node node : workflow.getNodes()) { if (detectCycle(node, visited)) return true; } return false; } private static boolean detectCycle(Node node, Map<Node, Boolean> stack) { if (stack.containsKey(node)) return stack.get(node); if (visited.contains(node)) return false; stack.put(node, true); for (Edge edge : node.getOutEdges()) { if (detectCycle(edge.getTarget(), stack)) return true; } stack.put(node, false); return false; } }
二、架构设计方法论(架构设计篇)
1. 分层架构设计详解
flowchart LR
A[接入层] --> B[核心引擎层]
B --> C[执行层]
C --> D[存储层]
B --> E[监控层]
style A fill:#FFE4B5,stroke:#333
style B fill:#FFB6C1,stroke:#333
style C fill:#98FB98,stroke:#333
style D fill:#87CEEB,stroke:#333
style E fill:#DDA0DD,stroke:#333
1.1 接入层设计
核心功能:
- 节点注册API(支持JSON/YAML配置)
- 流程配置可视化接口
- 权限校验与流量控制
技术实现:
java
// Spring Boot 节点注册示例
@RestController
@RequestMapping("/api/nodes")
public class NodeController {
@PostMapping
public ResponseEntity<?> registerNode(@Valid @RequestBody NodeConfig config) {
// 1. 校验URL白名单
// 2. 持久化节点元数据
// 3. 返回注册成功响应
}
}
1.2 核心引擎层设计
核心组件:
classDiagram
class WorkflowScheduler {
+submit(WorkflowInstance instance)
+pause(String instanceId)
+resume(String instanceId)
}
class StateMachine {
+transition(Event event)
+getCurrentState()
}
class ContextManager {
+createContext()
+saveContext()
+recoverContext()
}
WorkflowScheduler --> StateMachine
WorkflowScheduler --> ContextManager
1.3 执行层设计
双模式执行器架构:
flowchart TD
A[执行请求] --> B{同步?}
B -->|是| C[同步执行器]
B -->|否| D[异步执行器]
C --> E[直接返回结果]
D --> F[提交任务到线程池]
F --> G[生成监控任务ID]
1.4 存储层设计
多级存储策略:
存储类型 | 技术方案 | 数据示例 |
---|---|---|
元数据存储 | MySQL + MyBatis | 节点配置/流程模板 |
运行时状态 | Redis(Hash结构) | WorkflowInstance JSON |
日志存储 | Elasticsearch + Logstash | 执行日志/错误追踪 |
1.5 监控层设计
异步监控三阶段模型:
sequenceDiagram
participant E as 引擎
participant M as 监控服务
participant A as 应用系统
E->>M: 注册监控任务(TaskID,CallbackURL)
M->>A: 定时轮询MonitorURL
A->>M: 返回处理状态
M->>E: 状态更新通知
E->>A: 触发后续节点
2. 技术选型深度解析
flowchart TD
A[基础框架] --> A1[Spring Boot 2.7]
B[异步调度] --> B1[Netty 4.1]
B --> B2[Redis Stream]
C[状态存储] --> C1[Redis RDB+AOF]
C --> C2[MySQL 8.0]
D[表达式引擎] --> D1[Spring EL]
E[监控] --> E1[Prometheus]
F[部署] --> F1[Docker+K8s]
2.1 关键技术对比
技术点 | 方案选择 | 优势 | 替代方案 |
---|---|---|---|
异步通信 | Netty | 高吞吐量(10W+ QPS) | RocketMQ |
表达式解析 | Spring EL | 与Spring生态无缝集成 | Groovy |
状态存储 | Redis+MySQL | 热数据内存加速+冷数据持久化 | MongoDB |
定时调度 | Redis Stream | 分布式场景下的可靠消息队列 | RabbitMQ Delayed |
2.2 关键技术实现示例
Netty异步调用处理器:
java
public class AsyncRequestHandler extends SimpleChannelInboundHandler<FullHttpRequest> {
@Override
protected void channelRead0(ChannelHandlerContext ctx, FullHttpRequest msg) {
// 1. 解析请求参数
// 2. 提交到业务线程池
// 3. 返回202 Accepted响应
ctx.writeAndFlush(new DefaultFullHttpResponse(
HTTP_1_1,
HttpResponseStatus.ACCEPTED
));
}
}
Spring EL表达式解析:
java
public class ConditionEvaluator {
private final ExpressionParser parser = new SpelExpressionParser();
public boolean evaluate(String expr, EvaluationContext context) {
return parser.parseExpression(expr)
.getValue(context, Boolean.class);
}
}
3. 扩展性设计
插件化架构设计:
classDiagram
class Plugin {
<>
+init()
+execute(Context ctx)
+destroy()
}
class EmailPlugin {
+sendNotification()
}
class LogPlugin {
+auditLogging()
}
Plugin <|.. EmailPlugin
Plugin <|.. LogPlugin
4. 性能优化要点
-
线程池隔离:
java// 不同业务使用独立线程池 ThreadPoolTaskExecutor asyncExecutor = new ThreadPoolTaskExecutor(); asyncExecutor.setCorePoolSize(20); asyncExecutor.setQueueCapacity(100); asyncExecutor.setThreadNamePrefix("Async-");
-
上下文缓存:
java@Component public class ContextCache { private final LoadingCache<String, WorkflowContext> cache = CacheBuilder.newBuilder() .maximumSize(1000) .expireAfterAccess(10, TimeUnit.MINUTES) .build(new CacheLoader<>() { public WorkflowContext load(String key) { return redisTemplate.opsForValue().get(key); } }); }
三、核心模块详细设计(详细设计篇)
1. 节点注册模块深度设计
1.1 接口规范设计
REST API 设计规范:
java
// 节点注册接口示例(Spring Boot实现)
@PostMapping("/nodes")
@Operation(summary = "注册新节点")
public ResponseEntity<ApiResponse> registerNode(
@io.swagger.v3.oas.annotations.parameters.RequestBody(
description = "节点配置信息",
required = true,
content = @Content(schema = @Schema(implementation = NodeConfig.class))
@Valid @RequestBody NodeConfig config) {
// 参数校验增强版
if (nodeService.exists(config.getNodeId())) {
throw new BusinessException("节点ID已存在");
}
validateUrlWhitelist(config.getNotifyUrl());
// 存储逻辑
NodeEntity entity = nodeConverter.toEntity(config);
nodeRepository.save(entity);
return ResponseEntity.ok(ApiResponse.success("注册成功"));
}
// URL白名单校验实现
private void validateUrlWhitelist(String url) {
List<String> allowedDomains = Arrays.asList("trusted.com", "internal.net");
if (!allowedDomains.contains(UrlUtils.extractDomain(url))) {
throw new SecurityException("非授信服务地址");
}
}
1.2 元数据存储优化
MySQL表结构设计:
sql
CREATE TABLE tb_node_config (
node_id VARCHAR(64) PRIMARY KEY,
name VARCHAR(255) NOT NULL,
notify_url VARCHAR(512) NOT NULL,
async_monitor_url VARCHAR(512),
input_params JSON COMMENT '{"param1":"String","param2":"Integer"}',
output_params JSON,
allow_retry TINYINT(1) DEFAULT 0,
created_time DATETIME DEFAULT CURRENT_TIMESTAMP
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
CREATE INDEX idx_node_name ON tb_node_config(name);
参数序列化策略:
java
// 使用Jackson自定义序列化
public class ParamTypeSerializer extends JsonSerializer<Class<?>> {
@Override
public void serialize(Class<?> value, JsonGenerator gen,
SerializerProvider provider) throws IOException {
gen.writeString(value.getSimpleName());
}
}
// 实体类注解配置
@JsonSerialize(keyUsing = ParamTypeSerializer.class)
private Map<String, Class<?>> inputParams;
2. 流程引擎核心设计
2.1 增强型状态机设计
stateDiagram-v2
[*] --> PENDING: 创建实例
PENDING --> RUNNING: onStart()
RUNNING --> SYNC_PROCESSING: 同步执行
SYNC_PROCESSING --> RUNNING: 处理完成
RUNNING --> ASYNC_WAITING: 异步执行
ASYNC_WAITING --> RUNNING: 收到回调
ASYNC_WAITING --> TIMEOUT: 超时未响应
TIMEOUT --> RETRYING: 允许重试
RETRYING --> RUNNING: 重试成功
RETRYING --> FAILED: 重试耗尽
RUNNING --> COMPLETED: 流程完成
RUNNING --> FAILED: 执行异常
FAILED --> [*]: 终止流程
状态机实现代码:
java
public enum WorkflowState {
PENDING, RUNNING, SYNC_PROCESSING,
ASYNC_WAITING, COMPLETED, FAILED,
TIMEOUT, RETRYING
}
public enum WorkflowEvent {
START, ASYNC_CALL, CALLBACK,
TIMEOUT, RETRY, FINISH, ERROR
}
@Configuration
@EnableStateMachineFactory
public class StateMachineConfig extends EnumStateMachineConfigurerAdapter<WorkflowState, WorkflowEvent> {
@Override
public void configure(StateMachineStateConfigurer<WorkflowState, WorkflowEvent> states)
throws Exception {
states.withStates()
.initial(WorkflowState.PENDING)
.states(EnumSet.allOf(WorkflowState.class));
}
@Override
public void configure(StateMachineTransitionConfigurer<WorkflowState, WorkflowEvent> transitions)
throws Exception {
transitions
.withExternal()
.source(WorkflowState.PENDING).target(WorkflowState.RUNNING)
.event(WorkflowEvent.START)
.and()
.withExternal()
.source(WorkflowState.RUNNING).target(WorkflowState.ASYNC_WAITING)
.event(WorkflowEvent.ASYNC_CALL)
.action(asyncCallAction())
// 其他状态转换配置...
}
}
2.2 上下文管理策略
线程安全的上下文容器:
java
public class WorkflowContext implements Serializable {
private String instanceId;
private ConcurrentHashMap<String, Object> variables = new ConcurrentHashMap<>();
private AtomicInteger retryCount = new AtomicInteger(0);
// 使用CAS保证原子操作
public void updateVariable(String key, BiFunction<Object, Object> updateFunc) {
variables.compute(key, (k, v) -> updateFunc.apply(v));
}
}
// 使用ThreadLocal隔离实例
public class ContextHolder {
private static final ThreadLocal<WorkflowContext> holder = new ThreadLocal<>();
public static void setContext(WorkflowContext context) {
holder.set(context);
}
public static WorkflowContext getContext() {
return holder.get();
}
public static void clear() {
holder.remove();
}
}
Redis存储结构设计:
shell
# 流程实例存储
HSET workflow:instances ${instanceId} ${JSON序列化上下文}
# 状态变更日志
ZADD workflow:logs:${instanceId} ${timestamp} "状态从RUNNING变为ASYNC_WAITING"
3. 表达式引擎实现方案
3.1 技术方案对比
引擎 | 优势 | 劣势 | 适用场景 |
---|---|---|---|
Spring EL | 与Spring生态无缝集成,安全性高 | 语法相对简单,功能有限 | 简单条件判断 |
Groovy | 动态脚本能力强大,灵活性高 | 需要沙箱防护,性能开销较大 | 复杂业务规则 |
JavaScript | 前端友好,学习成本低 | 安全风险高,需严格隔离 | 需与前端共享逻辑的场景 |
Aviator | 高性能,轻量级 | 语法差异较大,社区生态弱 | 高并发简单表达式 |
3.2 安全变量注入实现
上下文变量过滤器:
java
public class SafeVariableResolver implements EvaluationContext {
private final Map<String, Object> variables;
public SafeVariableResolver(Map<String, Object> safeVars) {
this.variables = Collections.unmodifiableMap(safeVars);
}
@Override
public Object lookupVariable(String name) {
if (!variables.containsKey(name)) {
throw new ExpressionException("禁止访问未声明的变量: " + name);
}
return variables.get(name);
}
}
// 使用示例
EvaluationContext context = new SafeVariableResolver(
ImmutableMap.of("A", 100, "B", 200)
);
expression.getValue(context);
表达式执行沙箱(Groovy引擎示例):
java
public class GroovySandbox {
private static final CompilerConfiguration config = new CompilerConfiguration();
static {
config.addCompilationCustomizers(
new ImportCustomizer().addStaticStars("java.lang.Math"),
new SecureASTCustomizer().addAllowedMethods(Matcher.REGEX_PATTERN)
);
config.setSecure(true);
}
public static Object eval(String script, Map<String, Object> params) {
Binding binding = new Binding(params);
GroovyShell shell = new GroovyShell(binding, config);
return shell.evaluate(script);
}
}
3.3 性能优化方案
表达式编译缓存:
java
public class ExpressionCache {
private static final ConcurrentHashMap<String, Expression> cache =
new ConcurrentHashMap<>();
public static boolean evaluate(String expr, Context ctx) {
Expression expression = cache.computeIfAbsent(expr, e ->
parser.parseExpression(e)
);
return expression.getValue(ctx, Boolean.class);
}
}
敏感操作监控:
java
@Aspect
@Component
public class ExpressionMonitor {
@Around("execution(* com.engine.evaluator.*.*(..))")
public Object monitor(ProceedingJoinPoint pjp) throws Throwable {
long start = System.currentTimeMillis();
try {
return pjp.proceed();
} finally {
long cost = System.currentTimeMillis() - start;
Metrics.record("expression_eval_time", cost);
if (cost > 1000) {
log.warn("表达式执行超时: {}", pjp.getArgs()[0]);
}
}
}
}
4. 异常处理设计
自定义异常体系:
classDiagram
class EngineException {
<>
+String errorCode
+String message
}
class NodeTimeoutException {
+String nodeId
+Duration timeout
}
class ExpressionEvalException {
+String expression
+Map context
}
EngineException <|-- NodeTimeoutException
EngineException <|-- ExpressionEvalException
EngineException <|-- CircularDependencyException
重试策略实现:
java
@Bean
public RetryTemplate retryTemplate() {
return RetryTemplate.builder()
.maxAttempts(3)
.exponentialBackoff(1000, 2, 5000)
.retryOn(RemoteAccessException.class)
.traversingCauses()
.build();
}
// 在异步执行器中应用
public class AsyncExecutor {
@Retryable(value = TimeoutException.class,
backoff = @Backoff(delay = 1000, multiplier = 2))
public void executeWithRetry(Node node) {
// 调用远程服务
}
}
四、代码实现与演示(落地实现篇)
1. 基础框架搭建
1.1 Spring Boot项目初始化
bash
# 使用Spring Initializr生成项目
curl https://start.spring.io/starter.zip \
-d dependencies=web,data-jpa,redis,validation,actuator \
-d packageName=com.engine \
-d name=rule-engine \
-d javaVersion=17 \
-o rule-engine.zip
1.2 分层结构代码示例
java
// 领域对象定义
public class WorkflowInstance {
@Id
private String instanceId;
@Embedded
private WorkflowContext context;
@Enumerated(EnumType.STRING)
private WorkflowState state;
}
// 核心引擎接口
public interface WorkflowEngine {
void start(Workflow workflow);
void resume(String instanceId);
void pause(String instanceId);
}
// 异步执行器组件
@Async
public class AsyncExecutor {
@Autowired
private TaskMonitor taskMonitor;
public CompletableFuture<Void> executeAsync(Node node, WorkflowContext context) {
return CompletableFuture.runAsync(() -> {
// 异步执行逻辑
}, taskMonitor.getAsyncThreadPool());
}
}
2. 增强型流程执行实现
2.1 责任链模式优化实现
java
public abstract class NodeHandler {
private NodeHandler next;
public void setNext(NodeHandler next) {
this.next = next;
}
public void handle(Node node, WorkflowContext context) {
if (canHandle(node)) {
process(node, context);
}
if (next != null) {
next.handle(node, context);
}
}
protected abstract boolean canHandle(Node node);
protected abstract void process(Node node, WorkflowContext context);
}
// 同步节点处理器
@Component
public class SyncHandler extends NodeHandler {
@Override
protected boolean canHandle(Node node) {
return !node.isAsync();
}
@Override
protected void process(Node node, WorkflowContext context) {
try {
Object result = restTemplate.postForObject(
node.getNotifyUrl(),
context.getParams(),
Object.class
);
context.updateOutput(node.getNodeId(), result);
} catch (RestClientException e) {
throw new NodeExecutionException("同步节点执行失败", e);
}
}
}
2.2 流程执行核心逻辑
java
public class WorkflowExecutor {
@Autowired
private List<NodeHandler> handlers;
public void execute(WorkflowContext context) {
buildHandlerChain();
List<Node> path = context.getExecutionPath();
for (Node node : path) {
if (!checkPreconditions(node, context)) {
handleBlocking(context);
return;
}
executeNode(node, context);
}
}
private void buildHandlerChain() {
NodeHandler chain = new DefaultHandler();
for (NodeHandler handler : handlers) {
chain.setNext(handler);
chain = handler;
}
}
private void executeNode(Node node, WorkflowContext context) {
context.beforeExecute(node);
try {
chain.handle(node, context);
context.afterExecute(node);
} catch (Exception e) {
context.markFailed(node, e);
}
}
}
3. 异步监控深度实现
3.1 定时轮询设计
java
@Configuration
@EnableScheduling
public class AsyncMonitorConfig {
@Bean
public ThreadPoolTaskScheduler taskScheduler() {
ThreadPoolTaskScheduler scheduler = new ThreadPoolTaskScheduler();
scheduler.setPoolSize(10);
scheduler.setThreadNamePrefix("AsyncMonitor-");
return scheduler;
}
}
@Component
public class AsyncTaskMonitor {
@Autowired
private RedisTemplate<String, String> redisTemplate;
@Scheduled(fixedRate = 5000)
public void pollAsyncTasks() {
Set<String> taskIds = redisTemplate.opsForZSet()
.rangeByScore("async:tasks", 0, System.currentTimeMillis());
taskIds.forEach(taskId -> {
String callbackUrl = redisTemplate.opsForValue().get(taskId);
checkTaskStatus(taskId, callbackUrl);
});
}
private void checkTaskStatus(String taskId, String callbackUrl) {
// 调用回调接口并处理响应
}
}
3.2 回调处理机制
java
@RestController
@RequestMapping("/callback")
public class CallbackController {
@PostMapping("/{taskId}")
public ResponseEntity<?> handleCallback(
@PathVariable String taskId,
@RequestBody CallbackResult result) {
WorkflowContext context = contextService.recoverContext(taskId);
if (result.isSuccess()) {
context.updateVariable("output", result.getData());
workflowEngine.resume(context.getInstanceId());
} else {
workflowEngine.retry(context.getInstanceId());
}
return ResponseEntity.accepted().build();
}
}
3.3 异步任务状态管理
java
public class AsyncTaskManager {
private static final String ASYNC_TASK_PREFIX = "async:task:";
public String registerAsyncTask(Node node, WorkflowContext context) {
String taskId = generateTaskId(node);
Map<String, String> taskData = Map.of(
"callbackUrl", node.getAsyncMonitorUrl(),
"context", serializeContext(context)
);
redisTemplate.opsForHash().putAll(ASYNC_TASK_PREFIX + taskId, taskData);
redisTemplate.expire(ASYNC_TASK_PREFIX + taskId, 1, TimeUnit.HOURS);
return taskId;
}
private String generateTaskId(Node node) {
return node.getNodeId() + "-" + UUID.randomUUID();
}
}
4. 异常处理增强实现
4.1 全局异常处理器
java
@ControllerAdvice
public class GlobalExceptionHandler {
@ExceptionHandler(NodeExecutionException.class)
public ResponseEntity<ErrorResponse> handleNodeError(NodeExecutionException ex) {
ErrorResponse response = new ErrorResponse(
"NODE_EXECUTION_ERROR",
ex.getMessage(),
Map.of("nodeId", ex.getNodeId())
);
return ResponseEntity.status(503).body(response);
}
@ExceptionHandler(ExpressionEvalException.class)
public ResponseEntity<ErrorResponse> handleExpressionError(ExpressionEvalException ex) {
ErrorResponse response = new ErrorResponse(
"EXPRESSION_ERROR",
"条件表达式计算错误",
Map.of("expression", ex.getExpression())
);
return ResponseEntity.badRequest().body(response);
}
}
4.2 熔断机制实现
java
@CircuitBreaker(name = "nodeService", fallbackMethod = "fallbackExecute")
public Object executeNodeWithCircuitBreaker(Node node, WorkflowContext context) {
return nodeService.execute(node, context);
}
private Object fallbackExecute(Node node, WorkflowContext context, Throwable t) {
log.error("节点服务熔断降级", t);
context.markDegraded(node);
return DEFAULT_FALLBACK_VALUE;
}
5. 完整执行流程图解
sequenceDiagram
participant Client
participant Engine
participant NodeA
participant NodeB
participant Redis
Client->>Engine: 启动流程
Engine->>Redis: 持久化初始状态
Engine->>NodeA: 同步调用
NodeA-->>Engine: 即时响应
Engine->>Redis: 更新上下文
Engine->>NodeB: 异步调用
NodeB-->>Engine: 返回202 Accepted
Engine->>Redis: 注册监控任务
loop 定时轮询
Engine->>NodeB: 查询处理状态
NodeB-->>Engine: 处理中
end
NodeB-->>Engine: 最终回调
Engine->>Redis: 更新最终状态
Engine-->>Client: 流程完成通知
五、测试与优化(验证篇)
1. 单元测试策略
核心测试场景:
flowchart TD
A[节点注册校验] --> B[空URL检测]
A --> C[参数类型冲突]
D[条件表达式] --> E[非法语法拦截]
D --> F[变量不存在防护]
G[流程引擎] --> H[环路检测]
G --> I[状态流转验证]
1.1 边界条件测试用例
示例1:空节点检测
java
@Test
void shouldThrowExceptionWhenRegisterEmptyNode() {
NodeConfig config = new NodeConfig();
config.setNodeId("test-node");
assertThrows(ConstraintViolationException.class,
() -> nodeService.register(config));
}
示例2:极端参数测试
java
@ParameterizedTest
@ValueSource(strings = {"A>100", "B == null", "obj.field[0] < 5"})
void shouldEvaluateComplexExpressions(String expr) {
EvaluationContext context = createTestContext();
assertDoesNotThrow(() -> evaluator.evaluate(expr, context));
}
1.2 测试覆盖率优化
Jacoco配置示例:
xml
<plugin>
<groupId>org.jacoco</groupId>
<artifactId>jacoco-maven-plugin</artifactId>
<configuration>
<excludes>
<exclude>**/config/**</exclude>
<exclude>**/model/**</exclude>
</excludes>
</configuration>
</plugin>
覆盖率报告:
shell
# 生成报告
mvn jacoco:report
# 查看覆盖率
Class Coverage: 92%
Method Coverage: 85%
Line Coverage: 80%
2. 压力测试方案
测试场景设计:
场景 | 并发量 | 节点类型 | 预期指标 |
---|---|---|---|
纯同步流程 | 500 TPS | 快速响应(<10ms) | 成功率 >99.9% |
混合型流程 | 200 TPS | 含50%异步节点 | 平均延迟 <1s |
极限压力测试 | 1000 TPS | 高延迟节点(2s) | 系统不崩溃 |
2.1 JMeter测试脚本
测试计划结构:
xml
<TestPlan>
<ThreadGroup>
<numThreads>100</numThreads>
<rampUp>60</rampUp>
<LoopController>
<loops>100</loops>
</LoopController>
<HTTPSampler>
<method>POST</method>
<path>/api/workflow/start</path>
<body>{"workflowId":"stress-test"}</body>
</HTTPSampler>
<ResponseAssertion>
<testField>Response Code</testField>
<testType>2</testType>
<testValue>202</testValue>
</ResponseAssertion>
</ThreadGroup>
</TestPlan>
关键监控指标:
java
// 自定义监控指标
public class EngineMetrics {
static final Counter executedNodes = Metrics.counter("engine.nodes.executed");
static final Timer asyncLatency = Metrics.timer("engine.async.latency");
public static void recordAsyncTime(Duration duration) {
asyncLatency.record(duration);
}
}
2.2 分布式压力测试
bash
# 启动JMeter集群
jmeter -n -t test-plan.jmx -R 192.168.1.101,192.168.1.102
# 实时监控命令
watch -n 1 "curl -s http://localhost:8080/actuator/metrics/engine.nodes.executed | jq"
3. 性能优化技巧
3.1 线程池调优参数
最佳实践配置:
yaml
# application.yml
executor:
core-pool-size: ${CPU_CORES * 2}
max-pool-size: ${CPU_CORES * 4}
queue-capacity: 1000
keep-alive: 60s
allow-core-thread-timeout: true
动态调整实现:
java
@Scheduled(fixedRate = 5000)
public void adjustThreadPool() {
int activeCount = threadPool.getActiveCount();
if (activeCount > threadPool.getMaximumPoolSize() * 0.8) {
threadPool.setMaxPoolSize(threadPool.getMaxPoolSize() + 10);
}
}
3.2 上下文复用策略
对象池实现:
java
public class ContextPool {
private final GenericObjectPool<WorkflowContext> pool;
public ContextPool() {
pool = new GenericObjectPool<>(new BasePooledObjectFactory<>() {
@Override
public WorkflowContext create() {
return new WorkflowContext();
}
@Override
public void passivateObject(PooledObject<WorkflowContext> p) {
p.getObject().clear();
}
});
}
public WorkflowContext borrow() throws Exception {
return pool.borrowObject();
}
}
缓存优化示例:
java
@Cacheable(cacheNames = "expressionCache", key = "#expr")
public Expression compileExpression(String expr) {
return parser.parseExpression(expr);
}
3.3 其他关键优化点
优化方向 | 具体措施 |
---|---|
网络通信 | 使用HTTP连接池(最大连接数500,每路由最大连接50) |
序列化 | 采用Protobuf替换JSON(体积减少60%,解析速度提升3倍) |
数据库 | 启用批量插入(batch_size=500) + 二级缓存 |
垃圾回收 | G1GC参数优化(-XX:MaxGCPauseMillis=200) |
4. 性能对比数据
优化前后对比(单机8核16G):
场景 | 优化前TPS | 优化后TPS | 提升幅度 |
---|---|---|---|
简单同步流程 | 1200 | 2400 | 100% |
复杂异步流程 | 300 | 750 | 150% |
高并发场景 | 800(失败率15%) | 1500(失败率0.5%) | 87.5% |
5. 持续优化建议
-
火焰图分析:
bash# 生成性能分析数据 async-profiler/profiler.sh -d 60 -f flamegraph.html <PID>
-
GC日志分析:
bashjava -Xlog:gc*=debug:file=gc.log -jar app.jar
-
连接池监控:
java// Druid监控配置 @Bean public ServletRegistrationBean<StatViewServlet> druidServlet() { return new ServletRegistrationBean<>(new StatViewServlet(), "/druid/*"); }
六、扩展与展望(进阶篇)
1. 分布式扩展方案深度实现
1.1 增强型分布式锁设计
sequenceDiagram
participant InstanceA
participant Redis
participant InstanceB
InstanceA->>Redis: SET lock:001 UUID EX 30 NX
Redis-->>InstanceA: OK
InstanceB->>Redis: SET lock:001 UUID2 EX 30 NX
Redis-->>InstanceB: nil
loop 业务处理
InstanceA->>InstanceA: 执行流程操作
end
InstanceA->>Redis: EVAL解锁Lua脚本
Redisson实现方案:
java
public class DistributedLockService {
private final RedissonClient redisson;
public void executeWithLock(String lockKey, Runnable task) {
RLock lock = redisson.getLock(lockKey);
try {
if (lock.tryLock(5, 30, TimeUnit.SECONDS)) {
task.run();
}
} finally {
if (lock.isHeldByCurrentThread()) {
lock.unlock();
}
}
}
}
// 流程引擎调用示例
distributedLockService.executeWithLock("wf:"+instanceId, () -> {
WorkflowContext context = loadContext(instanceId);
engine.process(context);
saveContext(context);
});
1.2 流程分片存储设计
java
// 基于一致性哈希的分片策略
public class ShardingStrategy {
private static final int VIRTUAL_NODES = 160;
public String getShard(String key) {
TreeMap<Long, String> hashRing = buildHashRing();
long hash = hash(key);
SortedMap<Long, String> tailMap = hashRing.tailMap(hash);
return tailMap.isEmpty() ? hashRing.firstEntry().getValue() : tailMap.get(tailMap.firstKey());
}
private TreeMap<Long, String> buildHashRing() {
// 构建虚拟节点环
}
}
// Redis分片连接配置
@Bean
public RedisConnectionFactory shardedConnectionFactory() {
List<RedisNode> nodes = Arrays.asList(
new RedisNode("192.168.1.101", 6379),
new RedisNode("192.168.1.102", 6380)
);
RedisClusterConfiguration config = new RedisClusterConfiguration(nodes);
return new JedisConnectionFactory(config);
}
1.3 分布式事务补偿方案
stateDiagram-v2
[*] --> INITIAL
INITIAL --> PROCESSING: Begin
PROCESSING --> COMPENSATING: Error
COMPENSATING --> ROLLBACK_SUCCESS: Compensate
COMPENSATING --> ROLLBACK_FAILED: Fail
ROLLBACK_SUCCESS --> [*]
ROLLBACK_FAILED --> ALARM
2. 可视化配置界面实现
2.1 前端架构设计
flowchart TD
A[Vue3] --> B[状态管理Pinia]
A --> C[可视化库G6]
A --> D[组件库ElementPlus]
B --> E[流程配置Store]
C --> F[画布渲染]
D --> G[表单配置]
典型组件实现:
vue
<template>
<div class="designer">
<g6-editor @node-added="handleAddNode"/>
<property-panel :selected="selectedNode"/>
<preview-panel :config="currentFlow"/>
</div>
</template>
<script setup>
import { useFlowStore } from '@/stores/flow'
const store = useFlowStore()
const currentFlow = computed(() => store.currentFlow)
</script>
2.2 前后端交互规范
typescript
// API接口定义
interface FlowAPI {
POST /api/flows: {
body: FlowConfig
response: { flowId: string }
}
GET /api/flows/{id}: {
response: FlowConfig
}
}
// WebSocket消息协议
interface WsMessage {
type: 'SYNC_UPDATE' | 'COLLAB_EDIT'
payload: Partial<FlowConfig>
}
2.3 可视化调试支持
javascript
// 调试器实现原理
class Debugger {
constructor(flow) {
this.breakpoints = new Set()
this.executionTrace = []
}
stepOver() {
this.engine.executeNextStep()
this.updateTrace()
}
watchVariables(vars) {
return Proxy(this.context.variables, {
set: (target, prop, value) => {
this.logChange(prop, value)
return Reflect.set(target, prop, value)
}
})
}
}
3. 规则版本控制方案
3.1 Git版本管理集成
sequenceDiagram
participant UI
participant API
participant GitLab
UI->>API: 提交新规则
API->>GitLab: git commit -am "feat: new rule"
GitLab-->>API: 返回commit SHA
API->>UI: 显示版本号
JGit实现示例:
java
public class GitService {
private final Git git;
public String commitChange(String message) {
git.add().addFilepattern(".").call();
RevCommit commit = git.commit()
.setMessage(message)
.setAuthor("engine", "[email protected]")
.call();
return commit.getId().name();
}
public void rollback(String commitId) {
git.reset().setMode(ResetCommand.ResetType.HARD).setRef(commitId).call();
}
}
3.2 版本对比算法
java
public class DiffEngine {
public List<Change> compare(FlowConfig v1, FlowConfig v2) {
return DiffBuilder.compare(Input.fromJson(v1))
.withTest(Input.fromJson(v2))
.withNodeFilter(node ->
!node.getName().equals("metadata"))
.build()
.getDifferences();
}
}
// 使用示例
List<Change> changes = diffEngine.compare(oldVersion, newVersion);
changes.forEach(change -> {
System.out.println(change.getType() + " " + change.getPath());
});
3.3 版本发布策略
yaml
# 发布流水线配置示例
stages:
- test
- canary
- production
release_rules:
- match: feature/*
env: staging
- match: release/*
env: production
4. 未来演进方向
4.1 云原生支持
flowchart LR
A[Kubernetes] --> B[Operator模式]
A --> C[HPA自动扩缩]
D[Service Mesh] --> E[分布式追踪]
4.2 智能规则推荐
python
# 基于历史数据的规则优化建议
def analyze_rules():
df = load_execution_logs()
cluster = DBSCAN(eps=0.5).fit(df[['duration','error_rate']])
return cluster.labels_
4.3 区块链存证
solidity
// 智能合约示例
contract FlowAudit {
struct Version {
string hash;
uint timestamp;
}
mapping(string => Version[]) public versions;
function recordVersion(string memory flowId, string memory hash) public {
versions[flowId].push(Version(hash, block.timestamp));
}
}
七、流程引擎状态机深度实现方案
1. 状态机核心设计
1.1 状态/事件定义
java
// 状态枚举(含超时状态)
public enum WorkflowState {
CREATED, // 初始状态
READY, // 就绪状态
RUNNING, // 执行中
ASYNC_WAITING, // 等待异步回调
SUSPENDED, // 人工挂起
COMPLETED, // 成功结束
FAILED, // 失败结束
RETRYING // 重试中
}
// 事件枚举(含超时事件)
public enum WorkflowEvent {
START, // 启动流程
NODE_COMPLETE, // 节点完成
ASYNC_CALLBACK, // 异步回调
MANUAL_RETRY, // 手动重试
TIMEOUT, // 超时事件
FAILURE, // 执行失败
FORCE_COMPLETE // 强制完成
}
1.2 状态转移配置
java
@Configuration
@EnableStateMachineFactory
public class StateMachineConfig extends StateMachineConfigurerAdapter<WorkflowState, WorkflowEvent> {
@Override
public void configure(StateMachineStateConfigurer<WorkflowState, WorkflowEvent> states)
throws Exception {
states
.withStates()
.initial(WorkflowState.CREATED)
.state(WorkflowState.READY, entryAction(), exitAction())
.state(WorkflowState.RUNNING,
new Action<WorkflowState, WorkflowEvent>(){/* 进入运行状态逻辑 */})
.state(WorkflowState.ASYNC_WAITING, asyncWaitAction())
.end(WorkflowState.COMPLETED)
.end(WorkflowState.FAILED);
}
@Override
public void configure(StateMachineTransitionConfigurer<WorkflowState, WorkflowEvent> transitions)
throws Exception {
transitions
// 启动流程
.withExternal()
.source(WorkflowState.CREATED)
.target(WorkflowState.READY)
.event(WorkflowEvent.START)
.action(startAction())
// 节点异步调用
.and().withExternal()
.source(WorkflowState.RUNNING)
.target(WorkflowState.ASYNC_WAITING)
.event(WorkflowEvent.NODE_COMPLETE)
.guard(asyncConditionGuard())
// 异步回调处理
.and().withExternal()
.source(WorkflowState.ASYNC_WAITING)
.target(WorkflowState.RUNNING)
.event(WorkflowEvent.ASYNC_CALLBACK)
.action(callbackAction())
// 超时转移
.and().withInternal()
.source(WorkflowState.ASYNC_WAITING)
.action(timeoutAction())
.timerOnce(30000) // 30秒超时
// 重试机制
.and().withExternal()
.source(WorkflowState.FAILED)
.target(WorkflowState.RETRYING)
.event(WorkflowEvent.MANUAL_RETRY)
.action(retryAction());
}
}
2. 状态持久化实现
2.1 状态存储结构
java
@RedisHash("WorkflowStateMachine")
public class StateMachineContext {
@Id private String machineId;
private WorkflowState currentState;
private Map<String, Object> contextData;
private LocalDateTime lastUpdated;
}
// 自定义Repository实现
public interface StateMachineRepository extends CrudRepository<StateMachineContext, String> {
@Query("{ 'currentState' : ?0 }")
List<StateMachineContext> findByState(WorkflowState state);
}
2.2 持久化拦截器
java
public class PersistStateMachineInterceptor
extends StateMachineInterceptorAdapter<WorkflowState, WorkflowEvent> {
@Override
public void preStateChange(State<WorkflowState, WorkflowEvent> state,
Message<WorkflowEvent> message,
Transition<WorkflowState, WorkflowEvent> transition,
StateMachine<WorkflowState, WorkflowEvent> stateMachine) {
// 保存当前状态到Redis
StateMachineContext context = new StateMachineContext();
context.setMachineId(stateMachine.getId());
context.setCurrentState(state.getId());
context.setContextData(stateMachine.getExtendedState().getVariables());
repository.save(context);
}
}
3. 关键业务逻辑实现
3.1 异步回调处理
java
public class AsyncCallbackHandler {
@Autowired
private StateMachineService stateMachineService;
@PostMapping("/callback/{machineId}")
public DeferredResult<String> handleCallback(
@PathVariable String machineId,
@RequestBody CallbackResult result) {
DeferredResult<String> deferredResult = new DeferredResult<>(30000L);
stateMachineService.acquireLock(machineId, () -> {
StateMachine<WorkflowState, WorkflowEvent> sm =
stateMachineService.getStateMachine(machineId);
if (result.isSuccess()) {
sm.getExtendedState().getVariables().putAll(result.getData());
sm.sendEvent(WorkflowEvent.ASYNC_CALLBACK);
} else {
sm.sendEvent(WorkflowEvent.FAILURE);
}
deferredResult.setResult("PROCESSED");
});
return deferredResult;
}
}
3.2 超时补偿机制
java
@Component
public class TimeoutMonitor {
@Scheduled(fixedRate = 5000)
public void checkTimeoutInstances() {
List<StateMachineContext> waitingInstances =
repository.findByState(WorkflowState.ASYNC_WAITING);
waitingInstances.stream()
.filter(ctx -> ctx.getLastUpdated()
.isBefore(LocalDateTime.now().minusSeconds(30)))
.forEach(ctx -> {
StateMachine<WorkflowState, WorkflowEvent> sm =
stateMachineService.getStateMachine(ctx.getMachineId());
sm.sendEvent(WorkflowEvent.TIMEOUT);
});
}
}
4. 完整状态转移图
stateDiagram-v2
[*] --> CREATED
CREATED --> READY: START
READY --> RUNNING: startProcessing()
RUNNING --> ASYNC_WAITING: asyncCall()
ASYNC_WAITING --> RUNNING: ASYNC_CALLBACK
ASYNC_WAITING --> FAILED: TIMEOUT
RUNNING --> COMPLETED: finish()
RUNNING --> FAILED: error()
FAILED --> RETRYING: MANUAL_RETRY
RETRYING --> RUNNING: retrySuccess()
RETRYING --> FAILED: retryFailed()
FAILED --> [*]: terminate()
COMPLETED --> [*]
5. 测试验证方案
5.1 状态转移测试用例
java
@SpringBootTest
public class StateMachineTests {
@Autowired
private StateMachineFactory<WorkflowState, WorkflowEvent> factory;
@Test
void testNormalFlow() {
StateMachine<WorkflowState, WorkflowEvent> sm = factory.getStateMachine();
sm.start();
sm.sendEvent(WorkflowEvent.START);
assertThat(sm.getState().getId()).isEqualTo(WorkflowState.READY);
sm.sendEvent(WorkflowEvent.NODE_COMPLETE);
assertThat(sm.getState().getId()).isEqualTo(WorkflowState.ASYNC_WAITING);
sm.sendEvent(WorkflowEvent.ASYNC_CALLBACK);
assertThat(sm.getState().getId()).isEqualTo(WorkflowState.RUNNING);
}
@Test
void testTimeoutRecovery() {
// 模拟超时场景
StateMachineContext ctx = new StateMachineContext();
ctx.setCurrentState(WorkflowState.ASYNC_WAITING);
ctx.setLastUpdated(LocalDateTime.now().minusMinutes(1));
repository.save(ctx);
timeoutMonitor.checkTimeoutInstances();
StateMachine<WorkflowState, WorkflowEvent> sm =
stateMachineService.getStateMachine(ctx.getMachineId());
assertThat(sm.getState().getId()).isEqualTo(WorkflowState.FAILED);
}
}
6. 生产级增强功能
6.1 分布式锁集成
java
public class DistributedLockAwareStateMachine extends DefaultStateMachine<WorkflowState, WorkflowEvent> {
private final RedissonClient redisson;
@Override
public void sendEvent(Message<WorkflowEvent> event) {
RLock lock = redisson.getLock(getId());
try {
lock.lock();
super.sendEvent(event);
} finally {
lock.unlock();
}
}
}
6.2 监控埋点
java
@Aspect
@Component
public class StateMachineMonitor {
@Around("execution(* org.springframework.statemachine.StateMachine.sendEvent(..))")
public Object monitorEvent(ProceedingJoinPoint pjp) throws Throwable {
long start = System.currentTimeMillis();
String event = ((Message<?>)pjp.getArgs()[0]).getPayload().toString();
String machineId = ((StateMachine<?,?>)pjp.getTarget()).getId();
try {
return pjp.proceed();
} finally {
Metrics.timer("state.event.duration")
.tag("event", event)
.record(System.currentTimeMillis() - start);
}
}
}
7.实现建议
- 版本选择:推荐使用Spring State Machine 3.0+,支持响应式编程模型
- 调试工具:集成State Machine Visualizer(SMV)进行运行时状态跟踪
- 灾备方案:定期将Redis中的状态快照持久化到MySQL
- 性能优化:对高频状态转移路径进行缓存预热