vLLM代码推理Qwen2-VL多模态

由于近期代码微调以及测试都是在远程服务器上,因此LLamafactory-cli webui 以及vLLM的ui均无法使用,因此不断寻求解决方案,我提供一个解决方案,LLamafactory微调完成的模型需要合并为一个完整模型后再使用vLLM进行代码推理测试微调模型的结果。

由于chat启动的终端互动模式均无法上传图像进行交互,因此需要代码或者参数来上传图像进行理解。

Vision Language --- vLLM

这个链接里有vLLM支持的多模态大模型不同的函数对prompt的处理

我在这里提供一个使用vLLM对Qwen2-VL的多模态图像理解的python代码

python 复制代码
from vllm import LLM, SamplingParams
from PIL import Image

def run_qwen2_vl(questions: str, image_path: str):
    # 模型初始化配置
    llm = LLM(
        model="Qwen/Qwen2-VL-Lora_Sft",
        max_model_len=4096,
        max_num_seqs=5,
        dtype="half"
    )

    # 多模态数据加载
    image = Image.open(image_path)
    question = "What is the content of this image?"
    # 提示词构造
    prompt_template = [(
        "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
        "<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>"
        f"{question}<|im_end|>\n"
        "<|im_start|>assistant\n") for question in questions]
    print(prompt_template[0])
    sampling_params = SamplingParams(
        max_tokens=1024,
        temperature=0.8,
        top_p=0.95,
        frequency_penalty=0.2,
        presence_penalty=0.3,
        stop=["<|im_end|>"]
    )
    # 生成请求
    outputs = llm.generate({
    "prompt": prompt_template[0],
    "multi_modal_data": {"image": image},
    }, sampling_params=sampling_params)

    # 结果解析
    return [output.outputs[0].text for output in outputs]

# 使用示例
if __name__ == "__main__":
    response = run_qwen2_vl(
        questions=["请使用中文描述下这个图像并给出中文诊断结果"],
        image_path="aaaa.jpg"
    )
    print("模型输出:", response[0])
相关推荐
大模型真好玩3 分钟前
低代码Agent开发框架使用指南(四)—Coze大模型和插件参数配置最佳实践
人工智能·agent·coze
jerryinwuhan3 分钟前
基于大语言模型(LLM)的城市时间、空间与情感交织分析:面向智能城市的情感动态预测与空间优化
人工智能·语言模型·自然语言处理
落雪财神意17 分钟前
股指10月想法
大数据·人工智能·金融·区块链·期股
中杯可乐多加冰17 分钟前
无代码开发实践|基于业务流能力快速开发市场监管系统,实现投诉处理快速响应
人工智能·低代码
渣渣盟19 分钟前
解密NLP:从入门到精通
人工智能·python·nlp
新智元20 分钟前
万亿级思考模型,蚂蚁首次开源!20 万亿 token 搅局开源 AI
人工智能·openai
算家计算24 分钟前
阿里开源最强视觉模型家族轻量版:仅4B/8B参数,性能逼近72B旗舰版
人工智能·开源·资讯
MarkHD38 分钟前
Dify从入门到精通 第16天 工作流进阶 - 分支与判断:构建智能路由客服机器人
人工智能·机器人
意疏42 分钟前
从告警风暴到根因定位:SigNoz+CPolar让分布式系统观测效率提升10倍的实战指南
人工智能
新智元1 小时前
Ilya震撼发声!OpenAI前主管亲证:AGI已觉醒,人类还在装睡
人工智能·openai