vLLM代码推理Qwen2-VL多模态

由于近期代码微调以及测试都是在远程服务器上,因此LLamafactory-cli webui 以及vLLM的ui均无法使用,因此不断寻求解决方案,我提供一个解决方案,LLamafactory微调完成的模型需要合并为一个完整模型后再使用vLLM进行代码推理测试微调模型的结果。

由于chat启动的终端互动模式均无法上传图像进行交互,因此需要代码或者参数来上传图像进行理解。

Vision Language --- vLLM

这个链接里有vLLM支持的多模态大模型不同的函数对prompt的处理

我在这里提供一个使用vLLM对Qwen2-VL的多模态图像理解的python代码

python 复制代码
from vllm import LLM, SamplingParams
from PIL import Image

def run_qwen2_vl(questions: str, image_path: str):
    # 模型初始化配置
    llm = LLM(
        model="Qwen/Qwen2-VL-Lora_Sft",
        max_model_len=4096,
        max_num_seqs=5,
        dtype="half"
    )

    # 多模态数据加载
    image = Image.open(image_path)
    question = "What is the content of this image?"
    # 提示词构造
    prompt_template = [(
        "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
        "<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>"
        f"{question}<|im_end|>\n"
        "<|im_start|>assistant\n") for question in questions]
    print(prompt_template[0])
    sampling_params = SamplingParams(
        max_tokens=1024,
        temperature=0.8,
        top_p=0.95,
        frequency_penalty=0.2,
        presence_penalty=0.3,
        stop=["<|im_end|>"]
    )
    # 生成请求
    outputs = llm.generate({
    "prompt": prompt_template[0],
    "multi_modal_data": {"image": image},
    }, sampling_params=sampling_params)

    # 结果解析
    return [output.outputs[0].text for output in outputs]

# 使用示例
if __name__ == "__main__":
    response = run_qwen2_vl(
        questions=["请使用中文描述下这个图像并给出中文诊断结果"],
        image_path="aaaa.jpg"
    )
    print("模型输出:", response[0])
相关推荐
weisian15128 分钟前
进阶篇-8-数学篇-7--特征值与特征向量:AI特征提取的核心逻辑
人工智能·pca·特征值·特征向量·降维
Java程序员 拥抱ai30 分钟前
撰写「从0到1构建下一代游戏AI客服」系列技术博客的初衷
人工智能
186******2053134 分钟前
AI重构项目开发全流程:效率革命与实践指南
人工智能·重构
森之鸟43 分钟前
多智能体系统开发入门:用鸿蒙实现设备间的AI协同决策
人工智能·harmonyos·m
铁蛋AI编程实战1 小时前
大模型本地轻量化微调+端侧部署实战(免高端GPU/16G PC可运行)
人工智能·架构·开源
铁蛋AI编程实战1 小时前
最新版 Kimi K2.5 完整使用教程:从入门到实战(开源部署+API接入+多模态核心功能)
人工智能·开源
我有医保我先冲1 小时前
AI 时代 “任务完成“ 与 “专业能力“ 的区分:理论基础、行业影响与个人发展策略
人工智能·python·机器学习
Bamtone20251 小时前
PCB切片分析新方案:Bamtone MS90集成AI的智能测量解决方案
人工智能
Warren2Lynch1 小时前
2026年专业软件工程与企业架构的智能化演进
人工智能·架构·软件工程
_waylau1 小时前
【HarmonyOS NEXT+AI】问答08:仓颉编程语言是中文编程语言吗?
人工智能·华为·harmonyos·鸿蒙·仓颉编程语言·鸿蒙生态·鸿蒙6