vLLM代码推理Qwen2-VL多模态

由于近期代码微调以及测试都是在远程服务器上,因此LLamafactory-cli webui 以及vLLM的ui均无法使用,因此不断寻求解决方案,我提供一个解决方案,LLamafactory微调完成的模型需要合并为一个完整模型后再使用vLLM进行代码推理测试微调模型的结果。

由于chat启动的终端互动模式均无法上传图像进行交互,因此需要代码或者参数来上传图像进行理解。

Vision Language --- vLLM

这个链接里有vLLM支持的多模态大模型不同的函数对prompt的处理

我在这里提供一个使用vLLM对Qwen2-VL的多模态图像理解的python代码

python 复制代码
from vllm import LLM, SamplingParams
from PIL import Image

def run_qwen2_vl(questions: str, image_path: str):
    # 模型初始化配置
    llm = LLM(
        model="Qwen/Qwen2-VL-Lora_Sft",
        max_model_len=4096,
        max_num_seqs=5,
        dtype="half"
    )

    # 多模态数据加载
    image = Image.open(image_path)
    question = "What is the content of this image?"
    # 提示词构造
    prompt_template = [(
        "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
        "<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>"
        f"{question}<|im_end|>\n"
        "<|im_start|>assistant\n") for question in questions]
    print(prompt_template[0])
    sampling_params = SamplingParams(
        max_tokens=1024,
        temperature=0.8,
        top_p=0.95,
        frequency_penalty=0.2,
        presence_penalty=0.3,
        stop=["<|im_end|>"]
    )
    # 生成请求
    outputs = llm.generate({
    "prompt": prompt_template[0],
    "multi_modal_data": {"image": image},
    }, sampling_params=sampling_params)

    # 结果解析
    return [output.outputs[0].text for output in outputs]

# 使用示例
if __name__ == "__main__":
    response = run_qwen2_vl(
        questions=["请使用中文描述下这个图像并给出中文诊断结果"],
        image_path="aaaa.jpg"
    )
    print("模型输出:", response[0])
相关推荐
小二·19 分钟前
Python Web 开发进阶实战(终章):从单体应用到 AI 原生生态 —— 45 篇技术演进全景与未来开发者生存指南
前端·人工智能·python
秋名山大前端37 分钟前
AI数字孪生本体智能技术方案
人工智能·aigc·数据可视化
集和诚JHCTECH39 分钟前
边缘智能,触手可及|BRAV-7821高能效AI边缘计算系统正式发布
大数据·人工智能·边缘计算
新缸中之脑1 小时前
现代开发者的工具箱 (2026)
人工智能
才兄说1 小时前
机器人租售出场准?会卡节点上
人工智能·机器人
救救孩子把1 小时前
64-机器学习与大模型开发数学教程-5-11 本章总结与习题
人工智能·机器学习
救救孩子把1 小时前
55-机器学习与大模型开发数学教程-5-2 梯度下降法(GD)与随机梯度下降(SGD)
人工智能·机器学习
有Li2 小时前
学习通过皮层发育连续性迁移实现全生命周期脑解剖对应/文献速递-基于人工智能的医学影像技术
人工智能·深度学习·机器学习
BeforeEasy2 小时前
从零搭建一个完整的ai-agent小项目
人工智能·langchain
Jack___Xue2 小时前
AI大模型微调(三)------Qwen3模型Lora微调(使用Llamafactory)
人工智能