vLLM代码推理Qwen2-VL多模态

由于近期代码微调以及测试都是在远程服务器上,因此LLamafactory-cli webui 以及vLLM的ui均无法使用,因此不断寻求解决方案,我提供一个解决方案,LLamafactory微调完成的模型需要合并为一个完整模型后再使用vLLM进行代码推理测试微调模型的结果。

由于chat启动的终端互动模式均无法上传图像进行交互,因此需要代码或者参数来上传图像进行理解。

Vision Language --- vLLM

这个链接里有vLLM支持的多模态大模型不同的函数对prompt的处理

我在这里提供一个使用vLLM对Qwen2-VL的多模态图像理解的python代码

python 复制代码
from vllm import LLM, SamplingParams
from PIL import Image

def run_qwen2_vl(questions: str, image_path: str):
    # 模型初始化配置
    llm = LLM(
        model="Qwen/Qwen2-VL-Lora_Sft",
        max_model_len=4096,
        max_num_seqs=5,
        dtype="half"
    )

    # 多模态数据加载
    image = Image.open(image_path)
    question = "What is the content of this image?"
    # 提示词构造
    prompt_template = [(
        "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
        "<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>"
        f"{question}<|im_end|>\n"
        "<|im_start|>assistant\n") for question in questions]
    print(prompt_template[0])
    sampling_params = SamplingParams(
        max_tokens=1024,
        temperature=0.8,
        top_p=0.95,
        frequency_penalty=0.2,
        presence_penalty=0.3,
        stop=["<|im_end|>"]
    )
    # 生成请求
    outputs = llm.generate({
    "prompt": prompt_template[0],
    "multi_modal_data": {"image": image},
    }, sampling_params=sampling_params)

    # 结果解析
    return [output.outputs[0].text for output in outputs]

# 使用示例
if __name__ == "__main__":
    response = run_qwen2_vl(
        questions=["请使用中文描述下这个图像并给出中文诊断结果"],
        image_path="aaaa.jpg"
    )
    print("模型输出:", response[0])
相关推荐
神策数据2 分钟前
打造 AI Growth Team: 以 Data + AI 重塑品牌零售增长范式
人工智能·零售
2501_941333104 分钟前
数字识别与检测_YOLOv3_C3k2改进模型解析
人工智能·yolo·目标跟踪
逐梦苍穹12 分钟前
速通DeepSeek论文mHC:给大模型装上物理阀门的架构革命
人工智能·deepseek·mhc
运维小欣20 分钟前
Agentic AI 与 Agentic Ops 驱动,智能运维迈向新高度
运维·人工智能
Honmaple1 小时前
OpenClaw 迁移指南:如何把 AI 助手搬到新电脑
人工智能
wenzhangli71 小时前
Ooder A2UI 第一性原理出发 深度解析核心逻辑
人工智能·开源
网络安全研究所1 小时前
AI安全提示词注入攻击如何操控你的智能助手?
人工智能·安全
数据猿1 小时前
硬盘价格涨疯了,AI存储何去何从?
人工智能
zhangfeng11331 小时前
氨基酸序列表示法,蛋白质序列表达 计算机中机器学习 大语言模型中的表达,为什么没有糖蛋白或者其他基团磷酸化甲基化乙酰化泛素化
人工智能·机器学习·语言模型
陈天伟教授2 小时前
人工智能应用- 语言理解:06.大语言模型
人工智能·语言模型·自然语言处理