一、枚举的内存原理
1.1 常规case
Swift
enum TestEnum {
case test1, test2, test3 }
var t = TestEnum.test1
t = .test2
t = .test3
枚举是常规的case的情况-是采取一个字节来存枚举变量
通过拿到枚举的内存地址,看地址里面存的枚举值情况窥探枚举内存存储情况
var t = TestEnum.test1 //内存存的是0 0x00000001000106e0 00 00 00 00 00 00 00 00
print(Mems.ptr(ofVal: &t))
t = .test2 //内存存的是1 0x00000001000106e0 01 00 00 00 00 00 00 00
t = .test3 //2 内存存的是2 0x00000001000106e0 02 00 00 00 00 00 00 00
print(MemoryLayout<TestEnum>.size) //1
print(MemoryLayout<TestEnum>.stride) //1
print(MemoryLayout<TestEnum>.alignment) //1
1.2 原始值case的情况
Swift
var t = TestEnum.test1 //0x00000001000106c8 00 00 00 00 00 00 00 00
print(Mems.ptr(ofVal: &t))
t = .test2 //0x00000001000106c8 01 00 00 00 00 00 00 00
t = .test3 // 0x00000001000106c8 02 00 00 00 00 00 00 00
print(MemoryLayout<TestEnum>.size) //1
print(MemoryLayout<TestEnum>.stride) //1
print(MemoryLayout<TestEnum>.alignment) //1
结论原始值不影响枚举成员值的存储情况,和前面常规case还是一样的,原始值不占用枚举变量的内存
1.3 关联值的情况
Swift
enum TestEnum {
case test1(Int, Int, Int)
case test2(Int, Int)
case test3(Int)
case test4(Bool)
case test5
}
var e = TestEnum.test1(1, 2, 3)
e = .test2(4, 5)
e = .test3(6)
e = .test4(true)
e = .test5
现象
enum TestEnum {
case test1(Int, Int, Int)
case test2(Int, Int)
case test3(Int)
case test4(Bool)
case test5
}
// 1个字节存储成员值
// N个字节存储关联值(N取占用内存最大的关联值),任何一个case的关联值都共用这N个字节
// 共用体
// 小端:高高低低
// 01 00 00 00 00 00 00 00
// 02 00 00 00 00 00 00 00
// 03 00 00 00 00 00 00 00
// 00 枚举成员值
// 00 00 00 00 00 00 00
var e = TestEnum.test1(1, 2, 3)
print(Mems.ptr(ofVal: &e))
// 04 00 00 00 00 00 00 00
// 05 00 00 00 00 00 00 00
// 00 00 00 00 00 00 00 00
// 01 枚举成员值
// 00 00 00 00 00 00 00
e = .test2(4, 5)
print(Mems.memStr(ofVal: &e))
// 06 00 00 00 00 00 00 00
// 00 00 00 00 00 00 00 00
// 00 00 00 00 00 00 00 00
// 02 枚举成员值
// 00 00 00 00 00 00 00
e = .test3(6)
// 01 00 00 00 00 00 00 00
// 00 00 00 00 00 00 00 00
// 00 00 00 00 00 00 00 00
// 03 枚举成员值
// 00 00 00 00 00 00 00
e = .test4(true)
// 00 00 00 00 00 00 00 00
// 00 00 00 00 00 00 00 00
// 00 00 00 00 00 00 00 00
// 04
// 00 00 00 00 00 00 00
e = .test5
print(MemoryLayout<TestEnum>.size) //25
print(MemoryLayout<TestEnum>.stride) //32
print(MemoryLayout<TestEnum>.alignment) //8
结论:
// 1个字节存储成员值
// N个字节存储关联值(N取占用内存最大的关联值),任何一个case的关联值都共用这N个字节
1.4 只有一个case的情况
Swift
enum TestEnum {
case test1
}
print(MemoryLayout<TestEnum>.size) //0
print(MemoryLayout<TestEnum>.stride) //1
print(MemoryLayout<TestEnum>.alignment) //1
1.5 一个case的关联值
Swift
enum TestEnum {
case test(Int)
}
var t = TestEnum.test(10)
print(MemoryLayout<TestEnum>.size) //8
print(MemoryLayout<TestEnum>.stride) //8
print(MemoryLayout<TestEnum>.alignment) //8
因为只有一个case 只需要花8个字节来存你的关联值就行
综上 存储成员值的情况前提是有多个case,如果只有一个case的情况就没必要再花一个字节的内存去存成员值
二、switch底层原理
大概原理 取出那个成员值,然后拿成员值和case里面的值进行比较,和case 里面的哪个值相同就跳转到相应的位置
三、汇编
3.1 程序的本质

3.2 寄存器与内存 的关系
var a = 3
var b = a + 1 这句代码要经过如下操作

为什么不直接在内存中移动,cpu 他支持的指令他是有限制的
第一个限定 他是不支持数据内存挪内存的,如果你想把一个内存的数据挪动到宁一个内存,必须要经过寄存器,这是规定;
第二个 如果你想进行一些运算,必须将数据拉到cpu里面,运算完再送回去
3.3 编程语言的发展

3.4 汇编语言的种类

3.5 常见汇编指令

(这里面装的是内存地址)%rbp寄存器里面存的内存地址值- 0x18
movq -0x18(%rbp), %rax
movq根据这个内存地址对应的存贮空间的数据取出来赋值%rax
leaq -0x18(%rbp), %rax
leaq根据这个内存地址赋值%rax
获取地址和对应地址的内存数据
Swift
//
// MemsTest.swift
// TestSwift
//
// Created by lxj on 2025/3/2.
// Copyright © 2025 lxj
//
import Foundation
public enum MemAlign : Int {
case one = 1, two = 2, four = 4, eight = 8
}
private let _EMPTY_PTR = UnsafeRawPointer(bitPattern: 0x1)!
/// 辅助查看内存的小工具类
public struct Mems<T> {
private static func _memStr(_ ptr: UnsafeRawPointer,
_ size: Int,
_ aligment: Int) ->String {
if ptr == _EMPTY_PTR { return "" }
var rawPtr = ptr
var string = ""
let fmt = "0x%0\(aligment << 1)lx"
let count = size / aligment
for i in 0..<count {
if i > 0 {
string.append(" ")
rawPtr += aligment
}
let value: CVarArg
switch aligment {
case MemAlign.eight.rawValue:
value = rawPtr.load(as: UInt64.self)
case MemAlign.four.rawValue:
value = rawPtr.load(as: UInt32.self)
case MemAlign.two.rawValue:
value = rawPtr.load(as: UInt16.self)
default:
value = rawPtr.load(as: UInt8.self)
}
string.append(String(format: fmt, value))
}
return string
}
private static func _memBytes(_ ptr: UnsafeRawPointer,
_ size: Int) -> [UInt8] {
var arr: [UInt8] = []
if ptr == _EMPTY_PTR { return arr }
for i in 0..<size {
arr.append((ptr + i).load(as: UInt8.self))
}
return arr
}
/// 获得变量的内存数据(字节数组格式)
public static func memBytes(ofVal v: inout T) -> [UInt8] {
return _memBytes(ptr(ofVal: &v), MemoryLayout.stride(ofValue: v))
}
/// 获得引用所指向的内存数据(字节数组格式)
public static func memBytes(ofRef v: T) -> [UInt8] {
let p = ptr(ofRef: v)
return _memBytes(p, malloc_size(p))
}
/// 获得变量的内存数据(字符串格式)
///
/// - Parameter alignment: 决定了多少个字节为一组
public static func memStr(ofVal v: inout T, alignment: MemAlign? = nil) -> String {
let p = ptr(ofVal: &v)
return _memStr(p, MemoryLayout.stride(ofValue: v),
alignment != nil ? alignment!.rawValue : MemoryLayout.alignment(ofValue: v))
}
/// 获得引用所指向的内存数据(字符串格式)
///
/// - Parameter alignment: 决定了多少个字节为一组
public static func memStr(ofRef v: T, alignment: MemAlign? = nil) -> String {
let p = ptr(ofRef: v)
return _memStr(p, malloc_size(p),
alignment != nil ? alignment!.rawValue : MemoryLayout.alignment(ofValue: v))
}
/// 获得变量的内存地址
public static func ptr(ofVal v: inout T) -> UnsafeRawPointer {
return MemoryLayout.size(ofValue: v) == 0 ? _EMPTY_PTR : withUnsafePointer(to: &v) {
UnsafeRawPointer($0)
}
}
/// 获得引用所指向内存的地址
public static func ptr(ofRef v: T) -> UnsafeRawPointer {
if v is Array<Any>
|| Swift.type(of: v) is AnyClass
|| v is AnyClass {
return UnsafeRawPointer(bitPattern: unsafeBitCast(v, to: UInt.self))!
} else if v is String {
var mstr = v as! String
if mstr.memType() != .heap {
return _EMPTY_PTR
}
return UnsafeRawPointer(bitPattern: unsafeBitCast(v, to: (UInt, UInt).self).1)!
} else {
return _EMPTY_PTR
}
}
/// 获得变量所占用的内存大小
public static func size(ofVal v: inout T) -> Int {
return MemoryLayout.size(ofValue: v) > 0 ? MemoryLayout.stride(ofValue: v) : 0
}
/// 获得引用所指向内存的大小
public static func size(ofRef v: T) -> Int {
return malloc_size(ptr(ofRef: v))
}
}
public enum StringMemType : UInt8 {
/// TEXT段(常量区)
case text = 0xd0
/// taggerPointer
case tagPtr = 0xe0
/// 堆空间
case heap = 0xf0
/// 未知
case unknow = 0xff
}
extension String {
mutating public func memType() -> StringMemType {
let ptr = Mems.ptr(ofVal: &self)
return StringMemType(rawValue: (ptr + 15).load(as: UInt8.self) & 0xf0)
?? StringMemType(rawValue: (ptr + 7).load(as: UInt8.self) & 0xf0)
?? .unknow
}
}