大数据学习(53)-Hive与Impala

&&大数据学习&&
🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


1. 执行引擎

Hive

  • 基于 MapReduce 或 Tez

    • Hive 最初是基于 MapReduce 的,MapReduce 是一种批处理框架,适合处理大规模数据,但延迟较高。

    • 即使后来引入了 Tez 作为执行引擎,Hive 仍然是以批处理为核心,不适合低延迟查询。

  • 中间结果写磁盘

    • MapReduce 和 Tez 在执行过程中会将中间结果写入磁盘,导致额外的 I/O 开销。

Impala

  • 基于 MPP(大规模并行处理)架构

    • Impala 采用 MPP 架构,类似于传统的关系型数据库(如 Greenplum、Vertica),能够在内存中并行处理查询。
  • 全内存计算

    • Impala 的查询执行过程主要在内存中进行,避免了频繁的磁盘 I/O,显著提高了查询速度。
  • 无 MapReduce 开销

    • Impala 不依赖 MapReduce,直接读取 HDFS 数据并进行计算,减少了额外的调度和任务管理开销。

2. 查询优化

Hive

  • 优化器较弱

    • Hive 的查询优化器相对简单,生成的执行计划可能不够高效。
  • 动态代码生成

    • Hive 在运行时需要将 HiveQL 转换为 MapReduce 或 Tez 任务,增加了额外的开销。

Impala

  • 强大的查询优化器

    • Impala 的查询优化器更先进,能够生成更高效的执行计划。
  • LLVM 编译

    • Impala 使用 LLVM(低级虚拟机)将查询编译为本地机器代码,进一步提高了执行效率。
  • 谓词下推

    • Impala 支持谓词下推(Predicate Pushdown),在数据扫描阶段就过滤掉不必要的数据,减少了数据传输和处理的开销。

3. 数据访问

Hive

  • 依赖 HDFS

    • Hive 的数据存储在 HDFS 上,每次查询都需要从 HDFS 读取数据,延迟较高。
  • 数据格式支持

    • 虽然 Hive 支持多种数据格式(如 ORC、Parquet),但某些格式的读取效率不如 Impala。

Impala

  • 直接访问 HDFS

    • Impala 直接读取 HDFS 数据,避免了 MapReduce 的额外开销。
  • 优化数据格式

    • Impala 对 Parquet 和 ORC 等列式存储格式进行了深度优化,能够快速读取和处理数据。
  • 数据本地性

    • Impala 充分利用数据本地性(Data Locality),在数据所在的节点上执行计算,减少了数据传输的开销。

4. 资源管理

Hive

  • 依赖 YARN

    • Hive 的资源管理依赖于 YARN,YARN 的调度和资源分配可能引入额外的延迟。
  • 任务启动开销

    • 每次查询都需要启动 MapReduce 或 Tez 任务,增加了任务启动和调度的开销。

Impala

  • 独立资源管理

    • Impala 不依赖 YARN,直接管理资源,减少了调度和资源分配的开销。
  • 长服务进程

    • Impala 的守护进程(Impala Daemon)是长期运行的,查询可以直接在这些进程上执行,避免了任务启动的开销。

5. 并发处理

Hive

  • 并发能力有限

    • Hive 的并发能力受限于 MapReduce 或 Tez 的调度机制,高并发场景下性能下降明显。

Impala

  • 高并发支持

    • Impala 的 MPP 架构支持高并发查询,能够在多个节点上并行处理查询请求。
  • 资源隔离

    • Impala 支持资源池(Resource Pool),可以为不同的查询分配不同的资源,提高并发性能。

6. 功能差异

Hive

  • 功能丰富

    • Hive 支持复杂的数据类型、UDF 和事务处理,功能更加全面。
  • 适合批处理

    • Hive 的设计目标是批处理,适合大规模数据离线分析。

Impala

  • 功能精简

    • Impala 的功能相对精简,专注于 OLAP 场景,适合快速查询。
  • 实时查询

    • Impala 的设计目标是低延迟查询,适合实时分析和交互式查询。

总结

特性 Hive Impala
执行引擎 基于 MapReduce 或 Tez,批处理 基于 MPP 架构,全内存计算
查询优化 优化器较弱,动态代码生成 强大的查询优化器,LLVM 编译
数据访问 依赖 HDFS,中间结果写磁盘 直接访问 HDFS,优化数据格式
资源管理 依赖 YARN,任务启动开销大 独立资源管理,长服务进程
并发能力 并发能力有限 支持高并发,资源隔离
功能 功能丰富,适合批处理 功能精简,适合实时查询

Impala 比 Hive 快的原因

  1. 全内存计算:避免了磁盘 I/O 开销。

  2. MPP 架构:并行处理能力强。

  3. LLVM 编译:生成高效的本地机器代码。

  4. 直接访问 HDFS:减少了额外的调度和任务管理开销。

  5. 强大的查询优化器:生成更高效的执行计划。

Impala 更适合需要低延迟和高并发的实时查询场景,而 Hive 更适合大规模数据批处理任务。

相关推荐
breakloop几秒前
量化交易从0到1(理论篇)
笔记·学习·量化交易
大白的编程日记.26 分钟前
【Linux学习笔记】初识进程概念和进程PCB
linux·笔记·学习
每次的天空39 分钟前
Flutter学习总结之Android渲染对比
android·学习·flutter
大湾区经济门户网1 小时前
中国移动启动数字乡村“五新升级”:年底前,行政村5G覆盖达95%
大数据·5g·区块链·媒体
跳跳的向阳花1 小时前
08、Docker学习,常用安装:ClickHouse
学习·clickhouse·docker
2301_813506132 小时前
STP学习
网络·学习
Rinai_R2 小时前
学习汇编随手记
汇编·学习
promising-w2 小时前
【TI MSPM0】UART学习
嵌入式硬件·学习·ti 单片机
梁下轻语的秋缘3 小时前
每日c/c++题 备战蓝桥杯(小球反弹)[运动分解求解,最大公约数gcd]
c语言·c++·学习·算法·数学建模·蓝桥杯
小诸葛的博客3 小时前
es中节点类型有哪些
大数据·elasticsearch·jenkins