FastGPT 源码:RRF、Rerank 相关代码

文章目录

    • [FastGPT 源码:RRF、Rerank 相关代码](#FastGPT 源码:RRF、Rerank 相关代码)
      • [1. RRF (Reciprocal Rank Fusion) 合并实现](#1. RRF (Reciprocal Rank Fusion) 合并实现)
      • [2. Rerank 二次排序实现](#2. Rerank 二次排序实现)
      • [3. 重排序的主要特点](#3. 重排序的主要特点)
      • [4. 整个搜索流程](#4. 整个搜索流程)
      • [5. 这种方式的优势](#5. 这种方式的优势)

FastGPT 源码:RRF、Rerank 相关代码

下边介绍 RRF 合并和 Rerank 二次排序的相关实现:

1. RRF (Reciprocal Rank Fusion) 合并实现

主要在 datasetSearchResultConcat 函数中实现(packages/global/core/dataset/search/utils.ts):

typescript 复制代码
// RRF公式实现
const score = 1 / (k + rank);  // k是一个常数(60),rank是搜索结果的排名

// 合并多个渠道的搜索结果
arr.forEach((item) => {
  const k = item.k;
  item.list.forEach((data, index) => {
    const rank = index + 1;
    const score = 1 / (k + rank);
    
    // 如果已存在相同ID的结果,合并score
    if (record) {
      map.set(data.id, {
        ...record,
        score: concatScore,
        rrfScore: record.rrfScore + score
      });
    } else {
      map.set(data.id, {
        ...data,
        rrfScore: score
      });
    }
  });
});

RRF 合并主要用在以下场景:

  • 合并向量检索和全文检索的结果
  • 合并多个查询的搜索结果
  • 合并重排序后的结果

2. Rerank 二次排序实现

重排序功能在 reRankRecall 函数中实现(packages/service/core/ai/rerank/index.ts):

typescript 复制代码
export function reRankRecall({
  query,
  documents
}: {
  query: string;
  documents: { id: string; text: string }[];
}) {
  // 调用重排序模型API
  return POST<PostReRankResponse>(
    model.requestUrl,
    {
      model: model.model,
      query,
      documents: documents.map((doc) => doc.text)
    }
  ).then((data) => {
    // 返回重排序后的结果和相关性分数
    return data?.results?.map((item) => ({
      id: documents[item.index].id,
      score: item.relevance_score  // 0-1之间的相关性分数
    }));
  });
}

3. 重排序的主要特点

  • 使用专门的重排序模型对搜索结果进行二次评分
  • 得到 0-1 之间的相关性分数,比向量相似度更精确
  • 可以根据重排分数进行过滤,提高精度
  • 重排结果会与其他搜索结果一起通过 RRF 合并

4. 整个搜索流程

  1. 同时进行向量检索和全文检索
  2. 对检索结果进行重排序评分
  3. 使用 RRF 合并三种结果(向量检索、全文检索、重排序)
  4. 根据相关度分数进行过滤
  5. 返回最终结果

5. 这种方式的优势

  • 综合多种检索方式的优势
  • 通过重排序提高精度
  • 使用 RRF 合理合并多个渠道的结果
相关推荐
梦帮科技7 小时前
第二十二篇:AI驱动的工作流优化:性能瓶颈自动检测
数据结构·数据库·人工智能·python·开源·极限编程
程序员在囧途7 小时前
Sora2 25 秒视频 API 国内直连!10 积分/次,稳定秒退任务,支持 avatar & Remix(附 PHP 接入教程)
后端·开源·php
今天也要学习吖7 小时前
【开源客服系统推荐】AI-CS:一个开源的智能客服系统
人工智能·开源·客服系统·ai大模型·ai客服·开源客服系统
极限实验室7 小时前
Easy-Es 2.1.0-easysearch 版本发布
开源
NocoBase9 小时前
GitHub 上星星数量前 10 的 AI CRM 开源项目
人工智能·低代码·开源·github·无代码
GISHUB9 小时前
地图矢量切片常用的几种开源方案
开源·mapbox
神州数码云基地10 小时前
首次开发陌生技术?用 AI 赋能前端提速开发!
前端·人工智能·开源·ai开发
周杰伦_Jay10 小时前
【深度拆解智能体技术底层逻辑】从架构到实现的完整解析
人工智能·机器学习·架构·开源·论文·peai2026
qq_4634084210 小时前
React Native跨平台技术在开源鸿蒙中开发一个奖励兑换模块,增加身份验证和授权机制(如JWT),以防止未授权的积分兑换
react native·开源·harmonyos
CoookeCola10 小时前
无需抠图!Qwen-Image-Layered 一键分解图像图层,支持图层级精准编辑
论文阅读·深度学习·计算机视觉·ai作画·开源·视觉检测·aigc