FastGPT 源码:RRF、Rerank 相关代码

文章目录

    • [FastGPT 源码:RRF、Rerank 相关代码](#FastGPT 源码:RRF、Rerank 相关代码)
      • [1. RRF (Reciprocal Rank Fusion) 合并实现](#1. RRF (Reciprocal Rank Fusion) 合并实现)
      • [2. Rerank 二次排序实现](#2. Rerank 二次排序实现)
      • [3. 重排序的主要特点](#3. 重排序的主要特点)
      • [4. 整个搜索流程](#4. 整个搜索流程)
      • [5. 这种方式的优势](#5. 这种方式的优势)

FastGPT 源码:RRF、Rerank 相关代码

下边介绍 RRF 合并和 Rerank 二次排序的相关实现:

1. RRF (Reciprocal Rank Fusion) 合并实现

主要在 datasetSearchResultConcat 函数中实现(packages/global/core/dataset/search/utils.ts):

typescript 复制代码
// RRF公式实现
const score = 1 / (k + rank);  // k是一个常数(60),rank是搜索结果的排名

// 合并多个渠道的搜索结果
arr.forEach((item) => {
  const k = item.k;
  item.list.forEach((data, index) => {
    const rank = index + 1;
    const score = 1 / (k + rank);
    
    // 如果已存在相同ID的结果,合并score
    if (record) {
      map.set(data.id, {
        ...record,
        score: concatScore,
        rrfScore: record.rrfScore + score
      });
    } else {
      map.set(data.id, {
        ...data,
        rrfScore: score
      });
    }
  });
});

RRF 合并主要用在以下场景:

  • 合并向量检索和全文检索的结果
  • 合并多个查询的搜索结果
  • 合并重排序后的结果

2. Rerank 二次排序实现

重排序功能在 reRankRecall 函数中实现(packages/service/core/ai/rerank/index.ts):

typescript 复制代码
export function reRankRecall({
  query,
  documents
}: {
  query: string;
  documents: { id: string; text: string }[];
}) {
  // 调用重排序模型API
  return POST<PostReRankResponse>(
    model.requestUrl,
    {
      model: model.model,
      query,
      documents: documents.map((doc) => doc.text)
    }
  ).then((data) => {
    // 返回重排序后的结果和相关性分数
    return data?.results?.map((item) => ({
      id: documents[item.index].id,
      score: item.relevance_score  // 0-1之间的相关性分数
    }));
  });
}

3. 重排序的主要特点

  • 使用专门的重排序模型对搜索结果进行二次评分
  • 得到 0-1 之间的相关性分数,比向量相似度更精确
  • 可以根据重排分数进行过滤,提高精度
  • 重排结果会与其他搜索结果一起通过 RRF 合并

4. 整个搜索流程

  1. 同时进行向量检索和全文检索
  2. 对检索结果进行重排序评分
  3. 使用 RRF 合并三种结果(向量检索、全文检索、重排序)
  4. 根据相关度分数进行过滤
  5. 返回最终结果

5. 这种方式的优势

  • 综合多种检索方式的优势
  • 通过重排序提高精度
  • 使用 RRF 合理合并多个渠道的结果
相关推荐
scilwb13 小时前
Isaac Sim机械臂教程 - 阶段1:基础环境搭建与机械臂加载
人工智能·开源
杨杨杨大侠13 小时前
Atlas Mapper 案例 01:初级开发者 - 电商订单系统开发
java·开源·github
FIT2CLOUD飞致云1 天前
AI智能问数能力全面升级,DataEase开源BI工具v2.10.13 LTS版本发布
开源
FIT2CLOUD飞致云1 天前
九月月报丨MaxKB在不同规模医疗机构的应用进展汇报
人工智能·开源
算家计算1 天前
AI配音革命!B站最新开源IndexTTS2本地部署教程:精准对口型,情感随心换
人工智能·开源·aigc
OpenTiny社区1 天前
OpenTiny NEXT 内核新生:生成式UI × MCP,重塑前端交互新范式!
前端·开源·agent
幂简集成explinks1 天前
e签宝签署API更新实战:新增 signType 与 FDA 合规参数配置
后端·设计模式·开源
控心つcrazy1 天前
《独立开发者精选工具》第 018 期
开源·开发·工具·独立开发·出海·独立开发者
jctech2 天前
这才是2025年的插件化!ComboLite 2.0:为Compose开发者带来极致“爽”感
android·开源
杨杨杨大侠2 天前
解密 atlas-mapper 框架 (9/10):故障排查与调试技巧
java·开源·github