FastGPT 源码:RRF、Rerank 相关代码

文章目录

    • [FastGPT 源码:RRF、Rerank 相关代码](#FastGPT 源码:RRF、Rerank 相关代码)
      • [1. RRF (Reciprocal Rank Fusion) 合并实现](#1. RRF (Reciprocal Rank Fusion) 合并实现)
      • [2. Rerank 二次排序实现](#2. Rerank 二次排序实现)
      • [3. 重排序的主要特点](#3. 重排序的主要特点)
      • [4. 整个搜索流程](#4. 整个搜索流程)
      • [5. 这种方式的优势](#5. 这种方式的优势)

FastGPT 源码:RRF、Rerank 相关代码

下边介绍 RRF 合并和 Rerank 二次排序的相关实现:

1. RRF (Reciprocal Rank Fusion) 合并实现

主要在 datasetSearchResultConcat 函数中实现(packages/global/core/dataset/search/utils.ts):

typescript 复制代码
// RRF公式实现
const score = 1 / (k + rank);  // k是一个常数(60),rank是搜索结果的排名

// 合并多个渠道的搜索结果
arr.forEach((item) => {
  const k = item.k;
  item.list.forEach((data, index) => {
    const rank = index + 1;
    const score = 1 / (k + rank);
    
    // 如果已存在相同ID的结果,合并score
    if (record) {
      map.set(data.id, {
        ...record,
        score: concatScore,
        rrfScore: record.rrfScore + score
      });
    } else {
      map.set(data.id, {
        ...data,
        rrfScore: score
      });
    }
  });
});

RRF 合并主要用在以下场景:

  • 合并向量检索和全文检索的结果
  • 合并多个查询的搜索结果
  • 合并重排序后的结果

2. Rerank 二次排序实现

重排序功能在 reRankRecall 函数中实现(packages/service/core/ai/rerank/index.ts):

typescript 复制代码
export function reRankRecall({
  query,
  documents
}: {
  query: string;
  documents: { id: string; text: string }[];
}) {
  // 调用重排序模型API
  return POST<PostReRankResponse>(
    model.requestUrl,
    {
      model: model.model,
      query,
      documents: documents.map((doc) => doc.text)
    }
  ).then((data) => {
    // 返回重排序后的结果和相关性分数
    return data?.results?.map((item) => ({
      id: documents[item.index].id,
      score: item.relevance_score  // 0-1之间的相关性分数
    }));
  });
}

3. 重排序的主要特点

  • 使用专门的重排序模型对搜索结果进行二次评分
  • 得到 0-1 之间的相关性分数,比向量相似度更精确
  • 可以根据重排分数进行过滤,提高精度
  • 重排结果会与其他搜索结果一起通过 RRF 合并

4. 整个搜索流程

  1. 同时进行向量检索和全文检索
  2. 对检索结果进行重排序评分
  3. 使用 RRF 合并三种结果(向量检索、全文检索、重排序)
  4. 根据相关度分数进行过滤
  5. 返回最终结果

5. 这种方式的优势

  • 综合多种检索方式的优势
  • 通过重排序提高精度
  • 使用 RRF 合理合并多个渠道的结果
相关推荐
草梅友仁2 小时前
AI 图片文字翻译与视频字幕翻译工具推荐 | 2025 年第 23 周草梅周报
开源·github·aigc
心随_风动6 小时前
SUSE Linux 发行版全面解析:从开源先驱到企业级支柱
linux·运维·开源
PythonFun6 小时前
DeepSeek-R1-0528:开源推理模型的革新与突破
语言模型·开源
CoderJia程序员甲9 小时前
MCP 技术完全指南:微软开源项目助力 AI 开发标准化学习
microsoft·ai·开源·ai教程·mcp
星哥说事9 小时前
使用VuePress2.X构建个人知识博客,并且用个人域名部署到GitHub Pages中
开源·github
想用offer打牌11 小时前
想为Seata社区进行贡献?这几点你需要了解😯
后端·开源
何双新17 小时前
第21讲、Odoo 18 配置机制详解
linux·python·开源
说私域1 天前
定制开发开源AI智能名片驱动下的海报工厂S2B2C商城小程序运营策略——基于社群口碑传播与子市场细分的实证研究
人工智能·小程序·开源·零售
Python私教1 天前
字节跳动开源图标库:2000+图标一键换肤的魔法
python·开源
何双新1 天前
第2讲、Odoo深度介绍:开源ERP的领先者
python·开源