李宏毅深度学习--如何做到鱼与熊掌兼得

兼得也就是:在比较少的参数量的情况下得到较低的Loss
下面主要是对比:

为什么网络更深比网络更宽会更好

获得分段的function,分的段越多,得到的函数就越接近真实的

分段+常数+一些分段函数的sum

如何制造阶梯型的function

  • sigmoid function

每个neuron产生一个阶梯型的function

只要有足够多的neuron,就可以产生任何形状的piecewis function

ReLU

为什么我们要深层网络,而不是扩展网络的宽度

网络越深,错误率越低

同样的参数量的时候,把一层的结点数变多,不如把网络变深

在产生同样的function的时候,矮胖的网络比高瘦的网络需要更多的参数量

example

接入第二层

接入第三层

  • Deep:(2^k个线段)一层2个neuron,总共三层,总共6个neuron
  • Shallow:(2^k个线段)只一层,一个neuron只能产生一个线段,2^k个线段就需要2^k个neuron

exponentially:需要多的参数量的意思

相关推荐
fyakm2 小时前
RNN的注意力机制:原理与实现(代码示例)
rnn·深度学习·神经网络
金井PRATHAMA5 小时前
描述逻辑(Description Logic)对自然语言处理深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
Rock_yzh5 小时前
AI学习日记——参数的初始化
人工智能·python·深度学习·学习·机器学习
拆房老料6 小时前
Transformer推理优化全景:从模型架构到硬件底层的深度解析
深度学习·ai·自然语言处理·transformer
CiLerLinux6 小时前
第四十九章 ESP32S3 WiFi 路由实验
网络·人工智能·单片机·嵌入式硬件
七芒星20238 小时前
多目标识别YOLO :YOLOV3 原理
图像处理·人工智能·yolo·计算机视觉·目标跟踪·分类·聚类
Learn Beyond Limits8 小时前
Mean Normalization|均值归一化
人工智能·神经网络·算法·机器学习·均值算法·ai·吴恩达
byzy8 小时前
【论文笔记】VisionPAD: A Vision-Centric Pre-training Paradigm for Autonomous Driving
论文阅读·深度学习·计算机视觉·自动驾驶
ACERT3338 小时前
5.吴恩达机器学习—神经网络的基本使用
人工智能·python·神经网络·机器学习
C嘎嘎嵌入式开发9 小时前
(一) 机器学习之深度神经网络
人工智能·神经网络·dnn