Process-based Self-Rewarding Language Models 论文简介

基于过程的自奖励语言模型:LLM优化的新范式

引言

大型语言模型(LLM)在多种任务中展现出了强大的能力,尤其是在使用人工标注的偏好数据进行训练时。然而,传统的自奖励范式在数学推理任务中存在局限性,甚至可能在迭代训练中导致模型性能下降。为了解决这些问题,论文《Process-based Self-Rewarding Language Models》提出了一种新的框架,该框架结合了长链推理、逐步LLM评判(LLM-as-a-Judge)以及逐步偏好优化,以增强LLM的数学推理能力。

背景

基于人类反馈的强化学习(RLHF)

RLHF通常用于利用人工标注的偏好数据对LLM进行微调。然而,该方法受限于人工标注的质量和外部奖励模型的表现。为克服这些限制,自奖励LLM被提出,使模型能够生成自身的训练数据,并通过迭代评估优化自身性能。

数学推理中的自奖励挑战

尽管自奖励技术在指令遵循任务中表现良好,但在数学推理任务中存在以下问题:

  • 现有方法难以为复杂推理任务提供精细且准确的奖励信号。
  • 对于多步推理过程,难以设计合理的评分标准。

基于过程的自奖励语言模型

论文提出了一种新的自奖励方法,整合了以下关键技术:

  1. 逐步LLM评判(LLM-as-a-Judge):模型不仅评估最终答案,还对每个中间推理步骤进行判断。
  2. 逐步偏好优化:在每个推理步骤生成偏好对,实现更精确的优化。
  3. 迭代自奖励:模型通过多轮自我评估和训练不断优化。

实验设置

论文在不同规模的模型(7B和72B参数)上进行了评测,测试数据集涵盖多个数学推理基准,包括GSM8k、MATH和OlympiadBench。实验采用准确率及逐步偏好学习的有效性作为关键评估指标。

主要发现

  • 性能提升:基于过程的自奖励方法在数学推理任务上的表现显著提升,优于传统自奖励方法。
  • 精细化学习:逐步LLM评判使得模型能更准确地评估中间推理步骤。
  • 可扩展性:该方法在不同规模的模型上均表现良好,尤其是更大规模的模型表现更稳定。

结论

基于过程的自奖励范式为增强LLM能力提供了一种更结构化的方法,尤其适用于复杂推理任务。通过优化中间推理步骤并迭代偏好学习,该方法有潜力推动LLM的推理能力超越人类水平。

这一框架为需要结构化、多步推理的领域提供了一个有前景的优化方向,为更自主、能自我改进的AI系统奠定了基础。

论文链接:https://arxiv.org/pdf/2503.03746

相关推荐
Dongsheng_20194 分钟前
【汽车篇】AI深度学习在汽车零部件外观检测——连接器X-Ray透视检测
人工智能·深度学习·汽车
没有梦想的咸鱼185-1037-166311 分钟前
SCI论文写作:从实验设计到发表(选题、文献调研、实验设计、数据分析、论文结构及语言规范)
人工智能·信息可视化·数据分析·ai写作
AI新兵17 分钟前
深度学习基础:从原理到实践——第二章神经网络(中)
人工智能·深度学习·神经网络
pearbing24 分钟前
B站排名优化:知识、娱乐、生活类内容的差异化实操策略
人工智能·微信·小程序·生活·娱乐
leijiwen25 分钟前
AI × RWA 本地生活品牌数字资产管理与增长平台
人工智能·web3·区块链
却道天凉_好个秋34 分钟前
卷积神经网络CNN(四):池化技术
人工智能·神经网络·cnn·池化
ARM+FPGA+AI工业主板定制专家1 小时前
基于Jetson+FPGA+GMSL+AI的自动驾驶数据采集解决方案
人工智能·机器学习·自动驾驶
聊聊MES那点事1 小时前
汽车零部件MES系统实施案例介绍
人工智能·信息可视化·汽车·数据可视化
软件算法开发2 小时前
基于螳螂虾优化的LSTM深度学习网络模型(MShOA-LSTM)的一维时间序列预测算法matlab仿真
深度学习·lstm·一维时间序列预测·螳螂虾优化·mshoa·mshoa-lstm
星期天要睡觉2 小时前
计算机视觉(opencv)——仿射变换(Affine Transformation)
人工智能·opencv·计算机视觉