dify + ollama + deepseek-r1+ stable-diffusion 构建绘画智能体

故事背景

stable-diffusion 集成进 dify 后,我们搭建一个小智能体,验证下文生图功能

业务流程

用户输入文本 LLM根据用户诉求,
生成文生图英文prompt 根据文生图prompt调用
stable-diffusion 生成图片 输出图片和英文prompt

节点图

节点说明

LLM

LLM 节点采用 deepseek-r1 模型,提示词为:根据用户输入的文本,理解并转换成文生图提示词,且提示词必须是英文,输出​内容不带思考过程,以文本输出

代码执行

由于大模型生成的文本中,还存在思考过程,这里由于是demo,直接字符串截取,获取英文prompt

验证效果

LLM节点输出的数据为

json 复制代码
{
  "text": "<details style=\"color:gray;background-color: #f8f8f8;padding: 8px;border-radius: 4px;\" open> <summary> Thinking... </summary>\n好的,我现在需要处理用户的查询。用户提供了一段中文文本:"《红楼梦》中的林黛玉",然后要求我将其转换为用于文生图的提示词,并且这个提示词必须是英文,同时不带任何思考过程,直接输出结果。\n\n首先,我要理解用户的需求。他们希望将中文描述转换成英文的提示词,用于生成图像。这可能是因为他们正在使用一个支持英文提示词的绘图工具或API,比如DALL·E、MidJourney或者Stable Diffusion等。这些工具通常需要明确且详细的英文提示词来生成高质量的图像。\n\n接下来,我分析用户提供的文本:"《红楼梦》中的林黛玉"。这句话提到了两个关键元素:一是作品名称《红楼梦》,二是人物林黛玉。因此,提示词需要包含这两个信息点,并且可能还需要一些额外的描述来帮助生成更准确的画面。\n\n考虑到绘图模型通常对细节和氛围比较敏感,我应该在提示词中添加一些环境或风格的描述。例如,"古典中国文学作品"可以传达出《红楼梦》的文化背景;"忧郁而优雅"则能描绘林黛玉的性格特点;再加上"传统服饰"来具体化人物的形象。\n\n然后,我会把这些元素组合成一个连贯的英文句子。确保用词准确且自然流畅,避免过于生硬或直译。例如,"A melancholic and elegant character from the classic Chinese literary work 'Dream of the Red Chamber'"能够很好地表达林黛玉的角色特质和作品背景;"dressed in traditional Chinese attire"则进一步细化了人物的外貌特征。\n\n最后,检查整个提示词是否完整,是否有遗漏的关键信息。确保没有语法错误,并且每个部分都清晰传达给绘图模型,以便生成符合预期的画面。\n</details>\n\nA melancholic and elegant character from the classic Chinese literary work \"Dream of the Red Chamber\", dressed in traditional Chinese attire",
  "usage": {
    "prompt_tokens": 45,
    "prompt_unit_price": "0",
    "prompt_price_unit": "0",
    "prompt_price": "0E-7",
    "completion_tokens": 402,
    "completion_unit_price": "0",
    "completion_price_unit": "0",
    "completion_price": "0E-7",
    "total_tokens": 447,
    "total_price": "0E-7",
    "currency": "USD",
    "latency": 42.33978042751551
  },
  "finish_reason": "stop"
}
相关推荐
多恩Stone2 天前
【Stable Diffusion 1.5 】在 Unet 中每个 Cross Attention 块中的张量变化过程
stable diffusion
今夕节度使2 天前
ARM架构推理Stable Diffusiond
stable diffusion
远瞻。6 天前
【论文精读】2024 ECCV--MGLD-VSR现实世界视频超分辨率(RealWorld VSR)
人工智能·算法·stable diffusion·音视频·超分辨率重建
远瞻。7 天前
【论文精读】2024 CVPR--Upscale-A-Video现实世界视频超分辨率(RealWorld VSR)
论文阅读·人工智能·算法·stable diffusion·音视频·超分辨率重建
乱世刀疤7 天前
AI绘画:手把手带你Stable Diffusion从入门到精通(系列教程)
人工智能·ai作画·stable diffusion
layneyao8 天前
从0到1搭建AI绘画模型:Stable Diffusion微调全流程避坑指南
ai作画·stable diffusion
远瞻。9 天前
【论文精读】2024 arXiv --VEnhancer现实世界视频超分辨率(RealWorld VSR)
论文阅读·stable diffusion·音视频·超分辨率重建
立秋678911 天前
深入理解Diffusers: 从基础到Stable Diffusion
stable diffusion
Liudef0611 天前
Stable Diffusion底模对应的VAE推荐
stable diffusion
胖墩会武术11 天前
通过Auto平台与VScode搭建远程开发环境(以Stable Diffusion Web UI为例)
前端·vscode·stable diffusion