MCP是什么?
首先我们快速过一下MCP的基本概念,接着我们会通过一个简单的天气服务的教程,来上手学会使用MCP服务和在主机运行服务。本文根据官方教程改编。
1. MCP的基本概念
MCP(Model Context Protocol,模型上下文协议)是一个开放协议,旨在标准化应用程序如何向大型语言模型(LLM)提供上下文。它允许LLM与外部数据源和工具无缝集成,从而使AI模型能够访问实时数据并执行更复杂的任务。
2. MCP的架构
MCP的核心组件包括:
- 主机(Host):运行LLM的应用程序(如Claude Desktop),负责发起与MCP服务器的连接。
- 客户端(Client):在主机应用程序内部运行,与MCP服务器建立1:1连接。
- 服务器(Server):提供对外部数据源和工具的访问,响应客户端的请求。
- LLM:大型语言模型,通过MCP获取上下文并生成输出。
- 工作流程 :
- 主机启动客户端。
- 客户端连接到MCP服务器。
- 服务器提供资源、提示或工具。
- LLM使用这些信息生成响应。
3. MCP的原语
MCP通过三种主要原语(Primitives)增强LLM的功能,理解这些原语是编写MCP的关键:
- 提示(Prompts):预定义的指令或模板,指导LLM如何处理输入或生成输出。
- 资源(Resources):提供额外上下文的结构化数据,例如文件或数据库内容。
- 工具(Tools):可执行的函数,允许LLM执行操作(如查询API)或检索信息。
- 关键点:这些原语是MCP的核心,决定了服务器能为LLM提供什么能力。
MCP Server 构建一个简单的MCP服务器
在我们的示例中,使用 Claude for Desktop 作为客户端,自己编写python文件作为服务端,在 Claude Desktop 里调用server.py。
先决条件
- 已安装 python 3.10 或更高
- 已安装 Claude for Desktop
1. 安装uv,设置环境变量
打开 Powershell,输入如下命令:
sh
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
打开系统高级环境变量,在 Path
将uv路径添加进去:
bash
C:\Users\windows\.local\bin
重启 Powershell 。 在命令行输入 uv --version
, 能返回版本信息就算安装成功了:
2. 创建和设置项目
打开 Powershell , cd
到你想要创建项目的目录位置,如:
接着依次输入以下命令:
sh
# Create a new directory for our project
uv init weather
cd weather
# Create virtual environment and activate it
uv venv
.venv\Scripts\activate
# Install dependencies
uv add mcp[cli] httpx
# Create our server file。new-item 是powershell 命令,用于创建文件
new-item weather.py
3. 添加代码
将以下代码整个复制到 weather.py
:
python
from typing import Any
import httpx
from mcp.server.fastmcp import FastMCP
# Initialize FastMCP server
mcp = FastMCP("weather")
# Constants
NWS_API_BASE = "https://api.weather.gov"
USER_AGENT = "weather-app/1.0"
async def make_nws_request(url: str) -> dict[str, Any] | None:
"""Make a request to the NWS API with proper error handling."""
headers = {
"User-Agent": USER_AGENT,
"Accept": "application/geo+json"
}
async with httpx.AsyncClient() as client:
try:
response = await client.get(url, headers=headers, timeout=30.0)
response.raise_for_status()
return response.json()
except Exception:
return None
def format_alert(feature: dict) -> str:
"""Format an alert feature into a readable string."""
props = feature["properties"]
return f"""
Event: {props.get('event', 'Unknown')}
Area: {props.get('areaDesc', 'Unknown')}
Severity: {props.get('severity', 'Unknown')}
Description: {props.get('description', 'No description available')}
Instructions: {props.get('instruction', 'No specific instructions provided')}
"""
@mcp.tool()
async def get_alerts(state: str) -> str:
"""Get weather alerts for a US state.
Args: state: Two-letter US state code (e.g. CA, NY) """ url = f"{NWS_API_BASE}/alerts/active/area/{state}"
data = await make_nws_request(url)
if not data or "features" not in data:
return "Unable to fetch alerts or no alerts found."
if not data["features"]:
return "No active alerts for this state."
alerts = [format_alert(feature) for feature in data["features"]]
return "\n---\n".join(alerts)
@mcp.tool()
async def get_forecast(latitude: float, longitude: float) -> str:
"""Get weather forecast for a location.
Args: latitude: Latitude of the location longitude: Longitude of the location """ # First get the forecast grid endpoint
points_url = f"{NWS_API_BASE}/points/{latitude},{longitude}"
points_data = await make_nws_request(points_url)
if not points_data:
return "Unable to fetch forecast data for this location."
# Get the forecast URL from the points response
forecast_url = points_data["properties"]["forecast"]
forecast_data = await make_nws_request(forecast_url)
if not forecast_data:
return "Unable to fetch detailed forecast."
# Format the periods into a readable forecast
periods = forecast_data["properties"]["periods"]
forecasts = []
for period in periods[:5]: # Only show next 5 periods
forecast = f"""
{period['name']}:
Temperature: {period['temperature']}°{period['temperatureUnit']}
Wind: {period['windSpeed']} {period['windDirection']}
Forecast: {period['detailedForecast']}
"""
forecasts.append(forecast)
return "\n---\n".join(forecasts)
if __name__ == "__main__":
# Initialize and run the server
mcp.run(transport='stdio')
如果代码里提示依赖错误,安装对应的包就好。
4. 运行服务
打开 Claude for Desktop , 点击左上角菜单 ------ File ------ Settings ------ Developer
点击 Edit Config
,就会在 C:\Users\windows\AppData\Roaming\Claude
目录下自动创建 claude_desktop_config.json
文件。
打开 claude_desktop_config.json
, 添加如下代码:
json
{
"mcpServers": {
"weather": {
"command": "uv",
"args": [
"--directory",
"T:\\PythonProject\\weather",
"run",
"weather.py"
]
}
}
}
其中路径为在上一步创建的weather
目录, 使用绝对路径。
这会告诉 Claude for Desktop ,
- 我们的服务名叫
weather
, - 通过
uv --directory T:\\PythonProject\\weather run weather
来启动服务。
保存文件。
5. 在Claude中使用服务
打开任务管理器 ,将 Claude 结束任务 ,彻底关掉。 重新打开 Claude for Desktop 。
如果在Claude的对话框下看到了一把锤子 ,说明我们的MCP服务配置成功了。
点击锤子能看到:
在设置页显示如下:
下面测试服务:
在对话框输入:what's the weather in NY
服务配置成功啦!
MCP Client
要使用Claude API, 需要充值购买credits 否则请求会报Error: Error code: 403 - {'error': {'type': 'forbidden', 'message': 'Request not allowed'}}
1. 创建和设置项目
前期的步骤与上文介绍的一致,先决条件和uv的安装看 MCP Server 部分。 打开Powershell , cd 到python项目的目录下,依次输入如下命令:
sh
# Create project directory
uv init mcp-client
cd mcp-client
# Create virtual environment
uv venv
# Activate virtual environment
# On Windows:
.venv\Scripts\activate
# On Unix or MacOS:
source .venv/bin/activate
# Install required packages
uv add mcp anthropic python-dotenv
# Create our main file
new-item client.py
2. 配置API_KEY
SH
new-item .env
打开.env
文件,复制以下代码:
ini
ANTHROPIC_API_KEY=<your key here>
在Claude控制台创建KEY(需充值才能用),将API Key复制到.env
(确保key的安全,不要分享出去!)
将.env
文件添加到.gitignore , 在 powershell 输入以下命令:
sh
echo ".env" >> .gitignore
3. 添加代码
python
import asyncio
from typing import Optional
from contextlib import AsyncExitStack
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from anthropic import Anthropic
from dotenv import load_dotenv
load_dotenv() # load environment variables from .env
class MCPClient:
def __init__(self):
# Initialize session and client objects
self.session: Optional[ClientSession] = None
self.exit_stack = AsyncExitStack()
self.anthropic = Anthropic()
# methods will go here
async def connect_to_server(self, server_script_path: str):
"""Connect to an MCP server
Args: server_script_path: Path to the server script (.py or .js) """ is_python = server_script_path.endswith('.py')
is_js = server_script_path.endswith('.js')
if not (is_python or is_js):
raise ValueError("Server script must be a .py or .js file")
command = "python" if is_python else "node"
server_params = StdioServerParameters(
command=command,
args=[server_script_path],
env=None
)
stdio_transport = await self.exit_stack.enter_async_context(stdio_client(server_params))
self.stdio, self.write = stdio_transport
self.session = await self.exit_stack.enter_async_context(ClientSession(self.stdio, self.write))
await self.session.initialize()
# List available tools
response = await self.session.list_tools()
tools = response.tools
print("\nConnected to server with tools:", [tool.name for tool in tools])
async def process_query(self, query: str) -> str:
"""Process a query using Claude and available tools"""
messages = [
{
"role": "user",
"content": query
}
]
response = await self.session.list_tools()
available_tools = [{
"name": tool.name,
"description": tool.description,
"input_schema": tool.inputSchema
} for tool in response.tools]
# Initial Claude API call
response = self.anthropic.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1000,
messages=messages,
tools=available_tools
)
# Process response and handle tool calls
tool_results = []
final_text = []
assistant_message_content = []
for content in response.content:
if content.type == 'text':
final_text.append(content.text)
assistant_message_content.append(content)
elif content.type == 'tool_use':
tool_name = content.name
tool_args = content.input
# Execute tool call
result = await self.session.call_tool(tool_name, tool_args)
tool_results.append({"call": tool_name, "result": result})
final_text.append(f"[Calling tool {tool_name} with args {tool_args}]")
assistant_message_content.append(content)
messages.append({
"role": "assistant",
"content": assistant_message_content
})
messages.append({
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": content.id,
"content": result.content
}
]
})
# Get next response from Claude
response = self.anthropic.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1000,
messages=messages,
tools=available_tools
)
final_text.append(response.content[0].text)
return "\n".join(final_text)
async def chat_loop(self):
"""Run an interactive chat loop"""
print("\nMCP Client Started!")
print("Type your queries or 'quit' to exit.")
while True:
try:
query = input("\nQuery: ").strip()
if query.lower() == 'quit':
break
response = await self.process_query(query)
print("\n" + response)
except Exception as e:
print(f"\nError: {str(e)}")
async def cleanup(self):
"""Clean up resources"""
await self.exit_stack.aclose()
async def main():
if len(sys.argv) < 2:
print("Usage: python client.py <path_to_server_script>")
sys.exit(1)
client = MCPClient()
try:
await client.connect_to_server(sys.argv[1])
await client.chat_loop()
finally:
await client.cleanup()
if __name__ == "__main__":
import sys
asyncio.run(main())
如果开头anthropic报错,安装anthropic就好。
4. 运行Client
这里我们使用上文创建的mcp服务weather 在powershell输入:
sh
uv run client.py T:/PythonProject/weather/weather.py
接着,我们就可以在 Query 输入问题了。
至此,我们的第一个MCP服务端和客户端编写完成。