pytorch实现cifar10多分类总结

cifar-10简介:

CIFAR-10是一个常用的图像分类数据集,每张图片都是 3×32×32,3通道彩色图片,分辨率32×32。

它包含了10个不同类别,每个类别有6000张图像,其中5000张用于训练,1000张用于测试。这10个类别分别为:飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。

CIFAR-10分类任务是将这些图像正确地分类到它们所属的类别中。对于这个任务,可以使用深度学习模型,如卷积神经网络(CNN)来实现高效的分类。

项目共分为5个步骤:

1.数据加载及预处理(实现数据加载及预处理、归一化的理解、访问数据集、Dataset对象、Dataloader对象)

2.定义网络

3.定义损失函数和优化器(loss和optimizer)

4.训练网络并更新网络参数(enumerate函数)

5.测试网络:部分数据集(实际的label)、部分数据集(预测的label)、整个测试集

全局平均池化:

定义:将特征图所有像素值相加求平局,得到一个数值,即用该数值表示对应特征图

目的:替代全连接层

效果:减少参数数量,减少计算量,减少过拟合

结果分析

通过测试集的准确率来评估模型的性能。可以进一步调整模型结构、超参数或数据增强方法来提高准确率。

进一步优化

学习率调度:可以使用学习率调度器(如StepLR或ReduceLROnPlateau)来动态调整学习率。

数据增强:增加更多的数据增强方法,如随机旋转、颜色抖动等。

模型架构:尝试更复杂的模型架构,如ResNet、DenseNet等。

正则化:增加正则化方法,如Dropout、权重衰减等。

相关推荐
king of code porter几秒前
深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(1)
人工智能·深度学习·剪枝
普通老人21 分钟前
【人工智能】一些基本概念
人工智能
后端小肥肠26 分钟前
Coze实战:一分钟生成10w+独居女孩Vlog动画,零基础也能日更!
人工智能·aigc·coze
Blossom.11832 分钟前
使用Python和OpenCV实现图像识别与目标检测
人工智能·python·神经网络·opencv·安全·目标检测·机器学习
未来影子34 分钟前
SpringAI(GA):SpringAI下的MCP源码解读
人工智能·架构·ai编程
ai技术玩家42 分钟前
8个AI软件介绍及其工作原理讲解
人工智能
AI.NET 极客圈1 小时前
.NET 原生驾驭 AI 新基建实战系列(四):Qdrant ── 实时高效的向量搜索利器
数据库·人工智能·.net
用户21411832636021 小时前
dify案例分享--告别手工录入!Dify 工作流批量识别电子发票,5分钟生成Excel表格
前端·人工智能
SweetRetry1 小时前
前端依赖管理实战:从臃肿到精简的优化之路
前端·人工智能
Icoolkj1 小时前
Komiko 视频到视频功能炸裂上线!
人工智能·音视频