pytorch实现cifar10多分类总结

cifar-10简介:

CIFAR-10是一个常用的图像分类数据集,每张图片都是 3×32×32,3通道彩色图片,分辨率32×32。

它包含了10个不同类别,每个类别有6000张图像,其中5000张用于训练,1000张用于测试。这10个类别分别为:飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。

CIFAR-10分类任务是将这些图像正确地分类到它们所属的类别中。对于这个任务,可以使用深度学习模型,如卷积神经网络(CNN)来实现高效的分类。

项目共分为5个步骤:

1.数据加载及预处理(实现数据加载及预处理、归一化的理解、访问数据集、Dataset对象、Dataloader对象)

2.定义网络

3.定义损失函数和优化器(loss和optimizer)

4.训练网络并更新网络参数(enumerate函数)

5.测试网络:部分数据集(实际的label)、部分数据集(预测的label)、整个测试集

全局平均池化:

定义:将特征图所有像素值相加求平局,得到一个数值,即用该数值表示对应特征图

目的:替代全连接层

效果:减少参数数量,减少计算量,减少过拟合

结果分析

通过测试集的准确率来评估模型的性能。可以进一步调整模型结构、超参数或数据增强方法来提高准确率。

进一步优化

学习率调度:可以使用学习率调度器(如StepLR或ReduceLROnPlateau)来动态调整学习率。

数据增强:增加更多的数据增强方法,如随机旋转、颜色抖动等。

模型架构:尝试更复杂的模型架构,如ResNet、DenseNet等。

正则化:增加正则化方法,如Dropout、权重衰减等。

相关推荐
慢半拍iii10 小时前
ops-nn算子库深度解析:昇腾神经网络计算的基础
人工智能·深度学习·神经网络·ai·cann
程序员猫哥_10 小时前
HTML 生成网页工具推荐:从手写代码到 AI 自动生成网页的进化路径
前端·人工智能·html
哈__10 小时前
CANN优化Diffusion扩散模型推理:去噪过程与采样策略加速
人工智能
永远都不秃头的程序员(互关)10 小时前
CANN DVPP赋能AIGC:硬件加速视觉处理,打造极致生成式视觉工作流
人工智能·aigc
JustDI-CM10 小时前
AI学习笔记-提示词工程
人工智能·笔记·学习
悟纤10 小时前
学习与专注音乐流派 (Study & Focus Music):AI 音乐创作终极指南 | Suno高级篇 | 第33篇
大数据·人工智能·深度学习·学习·suno·suno api
饭饭大王66610 小时前
迈向智能体时代——构建基于 `ops-transformer` 的可持续 AI 系统
人工智能·深度学习·transformer
晚霞的不甘10 小时前
CANN 支持强化学习:从 Isaac Gym 仿真到机械臂真机控制
人工智能·神经网络·架构·开源·音视频
哈__10 小时前
CANN加速Image-to-Image转换:风格迁移与图像编辑优化
人工智能·计算机视觉
ujainu10 小时前
解码昇腾AI的“中枢神经”:CANN开源仓库全景式技术解析
人工智能·开源·cann