【redis】应用场景:缓存功能和计数功能

文章目录

缓存功能

实现思路

整体的思路:

应用服务器访问数据的时候,先查询 Redis

  • 如果 Redis 上数据存在了,就直接从 Redis 读取数据交给应用服务器,不继续访问数据库了
  • 如果 Redis 上数据不存在,再读取 MySQL,把读到的结果,返回给应用服务器。同时,把这个数据也写入到 Redis

Redis 这样的缓存,经常用来存储"热点"数据(高频被使用的数据)

刚才上述描述的过程,相当于是把最近使用到的数据作为热点数据

  • 暗含了一层假设:某个数据一旦被用到了,那么很可能在最近这段时间就会被反复用到

存在的问题

上述策略,存在一个明显的问题:

随着时间的推移,肯定是会有越来越多的 keyRedis 上访问不到,从而从 MySQL 读取并写入 Redis 中,此时 Redis 里面的数据不就越来越多了吗?

  1. 在把数据写给 Redis 的时候,给这个 key 设置一个过期时间
  2. Redis 也在内存不足的时候,提供了"淘汰策略"

伪代码实现

  1. 假设业务是根据用户 uid 获取用户信息
java 复制代码
UserInfo getUserInfo(long uid) {
	...
}

uid 还需要拼接一些前缀:user:info

  • 因为 Redis 里面存的信息有很多种,不仅仅只有用户信息
  • 所以为了后续进行区分,例如 grade:infoadmin:info... 需要拼接一个前缀
  1. 首先从 Redis 获取用户信息,我们假设用户信息保存在"user:info<uid>"
java 复制代码
// 根据 uid 得到 Redis的键
String key = "user:info: " + uid;


// 尝试从 Redis 中获取对应的值
String value = Redis 执行命令: get key;

// 如果缓存命中(hit)
if(value != null) {
	// 假设我们的用户信息按照 JSON 格式存储
	UserInfo userinfo = JSON 反序列化(value);
	return userInfo;
}
  1. 如果没有从 Redis 中得到用户信息及缓存 miss,则进一步从 MySQL 中获取对应的信息,随后写入缓存并返回
java 复制代码
// 如果未命中(miss)
if(value == null) {
	// 从数据库中,根据 uid 获取用户信息
	UserInfo userInfo = MySQL 执行 SQL: select * from user_info where uid = <uid>

	// 如果表中没有 uid 对应的用户信息
	if(userInfo == null) {
		响应 404
		return null;	
	}
	
	// 将用户信息序列化成 JSON 格式
	String value = JSON 序列化(userInfo);
	
	// 写入缓存,为了防止数据腐烂(rot),设置过期时间为 1 小时(3600s)
	Redis 执行命令: set key value ex 3600
	
	// 返回用户信息
	return userInfo;
}

记数功能

许多应⽤都会使⽤ Redis 作为计数的基础⼯具,它可以实现快速计数、查询缓存的功能,同时数据可以异步处理或者落地到其他数据源。

如图下图所⽰,例如视频⽹站的视频播放次数可以使⽤ Redis 来完成:⽤⼾每播放⼀次视频,相应的视频播放数就会**⾃增 1**。

实现思路

企业为什么老乐意收集用户的数据?

  • 因为统计可以进一步明确用户拒的需求,然后根据需求改进和迭代产品

统计

Redis 可以计数,但是不擅长统计

比如,想在上述的 Redis 中,统计播放量前 100 的视频有哪些

  • 基于 Redis 搞,就很麻烦
  • 相比之下,如果是 MySQL 来存储上述数据,一个 SQL 就搞定了
    所以在 Redis 计数之后,还需要将播放量同步到"统计数据仓库"中

异步的方式:这里写入统计数据仓库(MySQL/HDFS...)的步骤是异步

  • 不是说,来一个播放请求,这里就必须立马写一个数据
  • 不要求两边是同时完成的,只要最后都完成了就行

伪代码实现

java 复制代码
// 在 Redis 中统计某视频的播放次数
long incrVideoCounter(long vid) {
	key = "video: " + vid;
	long count = Redis 执行命令: incr key
	return counter;
}

实际中要开发一个成熟、稳定的真实技术系统,要面临的挑战远不止如此简单:防作弊、按照不同维度计数、避免单点击问题、数据持久到底层数据源等等

相关推荐
王嘉俊9253 分钟前
MySQL 入门笔记
数据库·笔记·sql·mysql·adb
时雨h19 分钟前
Spring MVC 详细分层和微服务
java·数据结构·数据库·sql
百香果果ccc22 分钟前
Maven的依赖管理
java·数据库·maven
小技工丨23 分钟前
Flink之SQL join
数据库·sql·flink
TING沫1 小时前
缓存id路由页面返回,历史路由栈
vue.js·缓存
洛北辰南2 小时前
系统架构设计师—数据库基础篇—数据库优化技术
数据库·系统架构·优化技术
大数据魔法师2 小时前
MongoDB(二) - MongoDB命令详解
数据库·mongodb
kse_music2 小时前
MySQL 与 MongoDB 的区别
数据库·mysql·mongodb
yqcoder2 小时前
Express + MongoDB 实现登录验证码
数据库·mongodb·express
田猿笔记2 小时前
FerretDB 2.0:开源 MongoDB 替代品的安装与使用指南
数据库·开源·ferretdb