【langchain/入门】使用langchain调用本地部署的大模型(以llama.cpp以及ollama为例)

文章目录

说在前面

  • 操作系统:windows
  • python版本:3.9
  • langchain版本:0.3.20
  • pycharm版本:2023.1.2 (Community Edition)
  • ollama版本:0.5.4
  • llama.cpp版本:b4870

ollama(qwen2.5-coder:7b)

部署模型

  • ollama部署大模型比较简单,到官网下载安装包后安装

  • 根据自己电脑的条件选择合适的模型,比如

  • 然后打开命令行,执行

    shell 复制代码
    ollama run qwen2.5-coder
  • 然后就可以直接在命令行对话了

    shell 复制代码
    $ ollama run qwen2.5-coder:latest
    >>> 你好
    你好!有什么我可以帮忙的吗?
    
    >>> Send a message (/? for help)

使用langchain

  • langchain提供了直接调用ollama api的package,安装后直接使用即可

    shell 复制代码
    pip install langchain-ollama
  • 代码环节

    shell 复制代码
    from langchain_ollama import OllamaLLM
    
    ollm = OllamaLLM(model="qwen2.5-coder:latest")
    print(ollm.invoke("你好"))

    运行

    shell 复制代码
    (venv) PS D:\Code\langchain> python .\main.py
    你好!有什么我可以帮忙的吗?

llama.cpp(deepseek-r1:1.5b)

模型部署

  • 算力不足,搞个1.5b测试吧

  • llama.cpp部署也挺简单的,到github选择合适的版本

  • x64-windows-nvdia gpu
    下载cudart-llama-bin-win-cuxx.x-x64.zip以及llama-b4870-bin-win-cuda-cuxx.x-x64.zip,其中cudart是cuda相关的依赖,解压后将里面的文件放到llama...zip解压后的同级目录即可
    例如

  • mac-m4
    下载llama-b4870-bin-macos-arm64.zip解压即可

  • 使用llama-client即可在命令行下进行交互,例如

    shell 复制代码
    ./llama-cli -m DeepSeek-R1-Distill-Qwen-1.5B-Q4_K_M.gguf
    > 你好
    <think>
    
    </think>
    你好!很高兴见到你,有什么我可以帮忙的吗?无论是聊天、解答问题还是提供建议,我都在这里为你服务。😊
  • 如果需要让langchain能够使用,需要部署服务,即使用llama-server

    shell 复制代码
    ./llama-sever -m DeepSeek-R1-Distill-Qwen-1.5B-Q4_K_M.gguf --port 50052 --host 0.0.0.0 -c 2048

使用langchain

  • llama.cpp部署的服务使用的API格式是与openai兼容的,所以在langchain中,我们可以使用openai对应的package

    shell 复制代码
    pip install langchain-openai
  • 代码环节

    python 复制代码
    from langchain_openai import ChatOpenAI
    
    llm = ChatOpenAI(max_tokens=None,
                     timeout=None,
                     openai_api_base="http://127.0.0.1:50052",
                     openai_api_key="none")
    # openai_api_base 就是llama-server 部署时监听的地址
    # openai_api_key 必须要填 随便填就行 不能为 ""
    print(llm.invoke("你好").content)

    运行

    shell 复制代码
    (venv) PS D:\Code\langchain> python .\main.py
    <think>
    
    </think>
    
    你好!很高兴见到你,有什么我可以帮忙的吗?无论是聊天、解答问题还是提供建议,我都在这里为你服务。😊
相关推荐
TGITCIC10 小时前
LangChain入门(十五)- LangGraph为什么这么香,看它是如何逆天DIFY的
langchain·工作流·rag·ai agent·ai智能体·langgraph·agentic
aihuangwu15 小时前
豆包图表怎么导出
人工智能·ai·deepseek·ds随心转
韦东东16 小时前
DeepSeek蒸馏后小模型,实测具备良好的链式推理,应用场景设想+本地部署步骤
蒸馏·deepseek
AC赳赳老秦19 小时前
专利附图说明:DeepSeek生成的专业技术描述与权利要求书细化
大数据·人工智能·kafka·区块链·数据库开发·数据库架构·deepseek
玄同7651 天前
告别 AgentExecutor:LangChain v1.0+ Agent 模块深度迁移指南与实战全解析
人工智能·语言模型·自然语言处理·langchain·nlp·agent·智能体
DS随心转APP1 天前
ChatGPT和Gemini回答怎么导出
人工智能·ai·chatgpt·deepseek·ds随心转
AC赳赳老秦1 天前
科研数据叙事:DeepSeek将实验数据转化为故事化分析框架
开发语言·人工智能·数据分析·r语言·时序数据库·big data·deepseek
TGITCIC1 天前
LangChain入门(十四)- Agentic RAG 的正确打开方式:用 LangChain 实现“有思考、可解释、不遗漏”的检索增强问答
langchain·rag·ai agent·agentic·智能体开发·rag增强检索·agentic flow
TGITCIC1 天前
LangChain入门(十三)- 6步实操Agent落地大法
langchain·agent·rag·ai agent·ai开发·agent开发·ai智能体开发
亚鲁鲁1 天前
具身智能-机械臂项目实战
机械臂·具身智能·deepseek·物理ai