Yolo-Uniow开集目标检测本地复现

本文不生产技术,只做技术的搬运工!!!

前言

Yolo-Uniow是清华团队前段时间公布的开集目标检测模型,继承了Yolo家族的优秀传统:快,对coco、lvis等开源数据集类别支持良好,本文不介绍原理及论文,仅记录在本地复现过程中出现的问题及解决方案。

环境配置

项目地址:GitHub - THU-MIG/YOLO-UniOW: YOLO-UniOW: Efficient Universal Open-World Object Detection

清华团队提供了环境配置方案,作者做了一些优化,对小白更友好,过程如下:

bash 复制代码
conda create -n yolouniow python=3.9
conda activate yolouniow
pip install torch==2.1.2 torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cu118
pip install mmcv==2.1.0 -f https://download.openmmlab.com/mmcv/dist/cu118/torch2.1/index.html
git clone https://github.com/THU-MIG/YOLO-UniOW.git
cd YOLO-UniOW
pip install -r requirements.txt
pip install -e .

本地推理(图像)

进行本地推理前需要先下载Yolo-Uniow权重、CLIP权重、lvis文件,其中Yolo-Uniow权重需要在github的链接中下载,CLIP权重是代码自动下载,lvis文件可以百度搜索lvis_v1_minival_inserted_image_name.json,在hugging face上下载,针对网络不好的问题,作者对这三个下载项提供了解决方案,均是免费下载。

Yolo-Uniow权重

https://download.csdn.net/download/qq_44908396/90474170https://download.csdn.net/download/qq_44908396/90474170

CLIP权重

解决OSError: We couldn't connect to 'https://huggingface.co' to load this file_we couldn't connect to-CSDN博客文章浏览阅读3.9k次,点赞23次,收藏25次。解决hugging face无法下载模型的问题_we couldn't connect tohttps://blog.csdn.net/qq_44908396/article/details/142516867?spm=1001.2014.3001.5501

lvis_v1_minival_inserted_image_name.json

https://download.csdn.net/download/qq_44908396/90474156https://download.csdn.net/download/qq_44908396/90474156该文件下载后放在YOLO-UniOW/data/coco/lvis目录下即可

推理脚本

在YOLO-UniOW工程下,新建infer.sh脚本,写入如下内容

bash 复制代码
python ./demo/image_demo.py \
./configs/pretrain/yolo_uniow_l_lora_bn_5e-4_100e_8gpus_obj365v1_goldg_train_lvis_minival.py \ #配置文件
./demo/yolo_uniow_l_lora_bn_5e-4_100e_8gpus_obj365v1_goldg_train_lvis_minival.pth \ #权重路径
./demo/src.jpg \ #图像路径
'white cars' \ #提示词
--topk 100 \
--threshold 0.05 \ #阈值
--output-dir ./demo/output/ #输出路径

./configs/pretrain/路径下提供了三个配置文件,分别对应三个权重,作者使用的是L模型,因此需要使用L配置文件

执行

bash 复制代码
conda activate yolouniow
sh infer.sh
相关推荐
廖圣平几秒前
直播间福袋脚本,研究json格式【一】
python
Fabarta技术团队1 分钟前
响应北京人工智能行动计划,枫清科技共筑AI创新高地
人工智能·科技
得贤招聘官2 分钟前
判断AI招聘系统成熟度的3个硬指标
人工智能
Lkygo2 分钟前
ragflow 构建本地知识库指南
人工智能·python·语言模型
晟诺数字人3 分钟前
数字人、AI数字人、虚拟数字人、3D数字人之间的区别于应用场景
大数据·人工智能·3d·数字人
木卫四科技3 分钟前
【CES 2026】木卫四科技发布R-IDPS,护航具身机器人“Chat GPT时刻”安全落地!
大数据·人工智能
Codebee3 分钟前
# 大厂AI全是黑话?Ooder靠Skill技术3天落地企业级应用,这才是真实用!
人工智能
He_Donglin4 分钟前
Data Mining| 类型变量编码(乳腺癌威斯康星数据集/葡萄酒数据集/鸢尾花数据集)
人工智能·数据挖掘
TDengine (老段)1 小时前
TDengine C/C++ 连接器进阶指南
大数据·c语言·c++·人工智能·物联网·时序数据库·tdengine
lixzest1 小时前
PyTorch与Transformer的关系
人工智能·pytorch·transformer