Yolo-Uniow开集目标检测本地复现

本文不生产技术,只做技术的搬运工!!!

前言

Yolo-Uniow是清华团队前段时间公布的开集目标检测模型,继承了Yolo家族的优秀传统:快,对coco、lvis等开源数据集类别支持良好,本文不介绍原理及论文,仅记录在本地复现过程中出现的问题及解决方案。

环境配置

项目地址:GitHub - THU-MIG/YOLO-UniOW: YOLO-UniOW: Efficient Universal Open-World Object Detection

清华团队提供了环境配置方案,作者做了一些优化,对小白更友好,过程如下:

bash 复制代码
conda create -n yolouniow python=3.9
conda activate yolouniow
pip install torch==2.1.2 torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cu118
pip install mmcv==2.1.0 -f https://download.openmmlab.com/mmcv/dist/cu118/torch2.1/index.html
git clone https://github.com/THU-MIG/YOLO-UniOW.git
cd YOLO-UniOW
pip install -r requirements.txt
pip install -e .

本地推理(图像)

进行本地推理前需要先下载Yolo-Uniow权重、CLIP权重、lvis文件,其中Yolo-Uniow权重需要在github的链接中下载,CLIP权重是代码自动下载,lvis文件可以百度搜索lvis_v1_minival_inserted_image_name.json,在hugging face上下载,针对网络不好的问题,作者对这三个下载项提供了解决方案,均是免费下载。

Yolo-Uniow权重

https://download.csdn.net/download/qq_44908396/90474170https://download.csdn.net/download/qq_44908396/90474170

CLIP权重

解决OSError: We couldn't connect to 'https://huggingface.co' to load this file_we couldn't connect to-CSDN博客文章浏览阅读3.9k次,点赞23次,收藏25次。解决hugging face无法下载模型的问题_we couldn't connect tohttps://blog.csdn.net/qq_44908396/article/details/142516867?spm=1001.2014.3001.5501

lvis_v1_minival_inserted_image_name.json

https://download.csdn.net/download/qq_44908396/90474156https://download.csdn.net/download/qq_44908396/90474156该文件下载后放在YOLO-UniOW/data/coco/lvis目录下即可

推理脚本

在YOLO-UniOW工程下,新建infer.sh脚本,写入如下内容

bash 复制代码
python ./demo/image_demo.py \
./configs/pretrain/yolo_uniow_l_lora_bn_5e-4_100e_8gpus_obj365v1_goldg_train_lvis_minival.py \ #配置文件
./demo/yolo_uniow_l_lora_bn_5e-4_100e_8gpus_obj365v1_goldg_train_lvis_minival.pth \ #权重路径
./demo/src.jpg \ #图像路径
'white cars' \ #提示词
--topk 100 \
--threshold 0.05 \ #阈值
--output-dir ./demo/output/ #输出路径

./configs/pretrain/路径下提供了三个配置文件,分别对应三个权重,作者使用的是L模型,因此需要使用L配置文件

执行

bash 复制代码
conda activate yolouniow
sh infer.sh
相关推荐
DanCheng-studio16 分钟前
毕设 基于机器视觉的驾驶疲劳检测系统(源码+论文)
python·毕业设计·毕设
carpell18 分钟前
【语义分割专栏】3:Segnet实战篇(附上完整可运行的代码pytorch)
人工智能·python·深度学习·计算机视觉·语义分割
智能汽车人31 分钟前
自动驾驶---SD图导航的规划策略
人工智能·机器学习·自动驾驶
mengyoufengyu40 分钟前
DeepSeek11-Ollama + Open WebUI 搭建本地 RAG 知识库全流程指南
人工智能·深度学习·deepseek
Tianyanxiao42 分钟前
华为×小鹏战略合作:破局智能驾驶深水区的商业逻辑深度解析
大数据·人工智能·经验分享·华为·金融·数据分析
一只小波波呀1 小时前
打卡第48天
python
rit84324991 小时前
基于BP神经网络的语音特征信号分类
人工智能·神经网络·分类
一点.点1 小时前
AlphaDrive:通过强化学习和推理释放自动驾驶中 VLM 的力量
人工智能·机器学习·自动驾驶
zstar-_1 小时前
一套个人知识储备库构建方案
python
科技小E1 小时前
口罩佩戴检测算法AI智能分析网关V4工厂/工业等多场景守护公共卫生安全
网络·人工智能