预训练微调类型分类

预训练与微调

1. 预训练

目标 :通过大规模数据训练模型,学习通用表示能力。

方法

• 自监督学习(如BERT、GPT)

• 多模态预训练(如CLIP、DALL·E)


2. 微调

微调是在预训练模型基础上,针对特定任务或领域进行优化。主要分为以下几类:

2.1 多模态模型微调

目标 :适配多模态任务(如图文生成、视觉问答)。

方法

• 跨模态对齐微调

• 多模态联合训练

2.2 文本模型微调

目标 :优化文本相关任务(如文本生成、分类)。

方法

• 监督微调

• 无监督/自监督微调

2.3 监督微调

目标 :使用标注数据优化特定任务。

细分

指令微调 :通过指令-输出对增强泛化能力。

对话微调 :优化对话生成和上下文理解。

领域适配 :将模型适配到特定领域(如医疗、法律)。

文本分类:优化文本分类任务(如情感分析、主题分类)。

2.4 无监督/自监督微调

目标 :利用未标注数据提升模型性能。

方法

• 掩码语言模型(如BERT)

• 对比学习(如SimCSE)

2.5 强化学习微调

目标 :通过奖励机制优化模型输出。

方法

• 人类反馈强化学习(RLHF)

• 直接偏好优化(DPO)

2.6 特殊的微调

目标 :针对特定需求或场景进行优化。

方法

• 知识蒸馏:将大模型知识迁移到小模型。

• 增量学习:逐步适配新任务或数据。


3. 知识终端

目标 :将外部知识整合到模型中。

方法

• 知识图谱嵌入

• 检索增强生成(RAG)


思维导图结构示例

复制代码
预训练
├── 多模态模型微调
│   ├── 跨模态对齐微调
│   └── 多模态联合训练
├── 文本模型微调
│   ├── 监督微调
│   │   ├── 指令微调
│   │   ├── 对话微调
│   │   ├── 领域适配
│   │   └── 文本分类
│   ├── 无监督/自监督微调
│   │   ├── 掩码语言模型
│   │   └── 对比学习
│   └── 强化学习微调
│       ├── 人类反馈强化学习(RLHF)
│       └── 直接偏好优化(DPO)
├── 特殊的微调
│   ├── 知识蒸馏
│   └── 增量学习
└── 知识终端
    ├── 知识图谱嵌入
    └── 检索增强生成(RAG)

相关推荐
Allen_LVyingbo21 分钟前
数智读书笔记系列035《未来医疗:医疗4.0引领第四次医疗产业变革》
人工智能·经验分享·笔记·健康医疗
zzc92126 分钟前
时频图数据集更正程序,去除坐标轴白边及调整对应的标签值
人工智能·深度学习·数据集·标签·时频图·更正·白边
isNotNullX28 分钟前
什么是数据分析?常见方法全解析
大数据·数据库·数据仓库·人工智能·数据分析
riveting37 分钟前
明远智睿H618:开启多场景智慧生活新时代
人工智能·嵌入式硬件·智能硬件·lga封装·3506
夜阑卧听风吹雨,铁马冰河入梦来1 小时前
Spring AI 阿里巴巴学习
人工智能·学习·spring
c7691 小时前
【文献笔记】Automatic Chain of Thought Prompting in Large Language Models
人工智能·笔记·语言模型·论文笔记
Blossom.1182 小时前
机器学习在智能供应链中的应用:需求预测与物流优化
人工智能·深度学习·神经网络·机器学习·计算机视觉·机器人·语音识别
Gyoku Mint2 小时前
深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
人工智能·pytorch·python·深度学习·神经网络·算法·聚类
zzywxc7872 小时前
AI大模型的技术演进、流程重构、行业影响三个维度的系统性分析
人工智能·重构
点控云2 小时前
智能私域运营中枢:从客户视角看 SCRM 的体验革新与价值重构
大数据·人工智能·科技·重构·外呼系统·呼叫中心