语音识别 FireRedASR-AED模型主要特点

FireRedASR-AED模型主要特点

  1. 架构设计

    • 编码器-解码器结构:采用Conformer编码器与Transformer解码器的结合。Conformer模块通过多头自注意力和卷积增强局部与全局依赖建模,Transformer解码器通过交叉注意力实现高效序列转换。
    • 子采样策略:编码器通过两层卷积(步长2,核大小3)将时间分辨率从10ms降至40ms,降低计算复杂度。
    • 混合分词策略:中文使用字符级分词,英文使用BPE分词,总词表量7,832,支持中英文混合输入。
  2. 训练数据与策略

    • 高质量数据:训练语料包含约70,000小时专业转录的普通话语音(人工标注为主),辅以11,000小时英语数据,覆盖多样化的声学条件和说话人。
    • 渐进正则化训练:从小模型到大模型逐步引入正则化(如Dropout和SpecAugment),优化收敛稳定性。
    • 轻量化设计:1.1B参数规模(相比LLM的8.3B更紧凑),适合资源受限场景。

中文准确率表现

  • 公开测试集
    在AISHELL-1、AISHELL-2 iOS、WenetSpeech(互联网和会议场景)四个公开普通话测试集上,平均CER为 3.18%,优于其他开源模型(如Paraformer-Large的4.56%)和部分商业模型(如ProviderA-Large的4.56%)。
  • 多源场景
    在短视频、直播、自动字幕等真实场景中,CER为 3.74% ,相对商业基线(CER 4.56%)实现 18% 的相对错误率降低(CERR)。

对方言的适应性

  • 方言测试集
    在KeSpeech(涵盖8种中文方言)测试集上,CER为 4.48%,显著优于开源模型Baichuan-omni(6.7%)和Qwen-Audio(9.9%)。
  • 训练数据泛化
    尽管训练数据以普通话为主,但通过多样化的说话人和声学条件覆盖,模型能够有效泛化到方言场景。此外,混合分词策略和Conformer的局部建模能力增强了对口音变化的鲁棒性。

总结

FireRedASR-AED凭借高效的架构设计、高质量训练数据及渐进正则化策略,在普通话识别中达到行业领先的准确率(CER 3.18%),并在方言场景中展现出色泛化能力(CER 4.48%)。其轻量化特性(1.1B参数)和开源协议使其成为工业部署与学术研究的理想选择。

相关推荐
RaceSnail2 分钟前
昇腾NPU上基于MindIE服务的AIME和MATH500测评方案
人工智能
LaughingZhu12 分钟前
PH热榜 | 2025-06-05
前端·人工智能·经验分享·搜索引擎·产品运营
大模型真好玩12 分钟前
最强大模型评测工具EvalScope——模型好不好我自己说了算!
前端·人工智能·python
MYH51621 分钟前
GPU加速与非加速的深度学习张量计算对比Demo,使用PyTorch展示关键差异
人工智能·pytorch·深度学习
追光的独行者44 分钟前
Dify工作流实践—根据word需求文档编写测试用例到Excel中
人工智能
新知图书1 小时前
OpenCV在图像上绘制文字示例
人工智能·opencv·计算机视觉
lowcode1 小时前
MCP协议在LLM系统中的架构与实现原理研究
人工智能·llm·mcp
声网1 小时前
中科大、月之暗面等开源对话式语音合成模型 MoonCast;ChatGPT 发布「录音模式」,自动录音和生成会议纪要丨日报
人工智能
叶子2024221 小时前
守护进程实验——autoDL
人工智能·算法·机器学习
陈奕昆1 小时前
4.3 HarmonyOS NEXT AI驱动的交互创新:智能助手、实时语音与AR/MR开发实战
人工智能·交互·harmonyos