英伟达:LLM两阶段KV缓存压缩

📖标题:RocketKV: Accelerating Long-Context LLM Inference via Two-Stage KV Cache Compression

🌐来源:arXiv, 2502.14051

🌟摘要

🔸基于Transformer的大型语言模型在解码阶段严重依赖于KV缓存来有效地处理扩展上下文。然而,KV缓存的大小与输入长度成比例增长,随着解码的进行,会给内存带宽和容量带来负担。

🔸为了应对这一挑战,我们提出了RocketKV,这是一种无需训练的KV缓存压缩策略,专门用于在解码阶段减少KV缓存的内存带宽和容量需求。RocketKV包含两个连续的阶段。在第一阶段,它使用SnapKV++对输入序列令牌执行粗粒度KV缓存驱逐,这是一种在SnapKV基础上改进的方法,引入了自适应池大小,并与分组查询注意力完全兼容。在第二阶段,它采用混合注意力方法进行细粒度top-k稀疏注意力,通过利用头部和序列维数减少来近似注意力得分。结合这两个阶段,RocketKV实现了显著的KV缓存提取带宽和存储节省,同时保持了与完整KV缓存注意力相当的准确性。

🔸我们发现,与完整的KV缓存基线相比,RocketKV在NVIDIA H100 GPU上的解码阶段提供了高达3倍的端到端加速,峰值内存减少了31%,同时在各种长上下文任务上实现了可忽略的精度损失。

🛎️文章简介

🔸研究问题:长上下文大语言模型(LLM)推理过程中,键值缓存(KV cache)在解码阶段成为主要瓶颈,特别是在内存带宽和容量需求方面。

🔸主要贡献:论文提出了一种名为RocketKV的两阶段KV缓存压缩方法,通过结合永久KV令牌驱逐和动态KV令牌选择,显著加速了LLM推理的解码阶段,同时在保持模型准确性的情况下降低了内存带宽和容量的需求。

📝重点思路

🔸SnapKV++:第一阶段的粗粒度KV缓存驱逐方法,针对输入提示进行有效的KV令牌保留,通过聚合每个注意力组的得分来选择关键KV令牌。

🔸混合注意力(Hybrid Attention):第二阶段的细粒度动态KV令牌选择方法,通过同时利用序列维度和头维度的稀疏性来改进KV令牌的选择,增强预测准确性。

🔸实验评估:在多个长上下文基准上(如LongBench、RULER等)进行对比实验,评估RocketKV与其他方法在准确性、速度和内存使用方面的性能。

🔎分析总结

🔸RocketKV在低令牌预算(如256或512)下,能够显著降低内存带宽和容量使用,同时保持与全KV缓存接近的准确性。

🔸在不同模型和基准测试中,RocketKV在多个设置下表现出优越的性能,尤其在低令牌预算时,相比其他方法具有更小的准确性损失。

🔸实验结果显示,在NVIDIA H100 GPU上,RocketKV在解码阶段实现了高达3倍的速度提升和31%的峰值内存减少。

💡个人观点

论文的核心在于选择重要的KV令牌,通过筛选策略,保证正确性的同时实现压缩方法。

🧩附录


相关推荐
Learn Beyond Limits3 分钟前
The learning process of Decision Tree Model|决策树模型学习过程
人工智能·深度学习·神经网络·学习·决策树·机器学习·ai
AI360labs_atyun5 分钟前
2025世界智博会,揭幕AI触手可及的科幻生活
人工智能·ai·音视频·生活
luoganttcc9 分钟前
小鹏汽车 vla 算法最新进展和模型结构细节
人工智能·算法·汽车
算家计算12 分钟前
面壁智能开源多模态大模型——MiniCPM-V 4.5本地部署教程:8B参数开启多模态“高刷”时代!
人工智能·开源
居然JuRan12 分钟前
从零开始学大模型之大语言模型
人工智能
扑克中的黑桃A14 分钟前
AI 对话高效输入指令攻略(一):了解AI对话指令
人工智能
算家计算26 分钟前
不止高刷!苹果发布会AI功能全面解析:实时翻译、健康监测重磅升级
人工智能·apple·资讯
m0_6770343539 分钟前
机器学习-异常检测
人工智能·深度学习·机器学习
张子夜 iiii1 小时前
实战项目-----在图片 hua.png 中,用红色画出花的外部轮廓,用绿色画出其简化轮廓(ε=周长×0.005),并在同一窗口显示
人工智能·pytorch·python·opencv·计算机视觉
胡耀超1 小时前
3.Python高级数据结构与文本处理
服务器·数据结构·人工智能·windows·python·大模型