Numpy broadcasting规则

Numpy的broadcast操作是为了将两个不同形状的数组,通过一系列规则,变换成形状相同的数组,从而使得它们之间可以进行按元素进行的计算。

Broadcasting的机制并不复杂,只要记住以下几条规则就可以了:

1. 顺序。首先,需要对两个数组的维度进行对其,对齐的顺序是从右向左进行的。也就是说,每个数组的最内侧的维度互相对应,然后依次向外进行匹配。

2. 匹配。两个数组的每一个维度都要匹配。所谓匹配,就是满足下面两个条件之一:

  1. 两个维度的长度相等

  2. 其中一个维度的长度为1

如果两个数组的维度个数不相等,那么维度较少的数组将被扩展到具有相同的维度,新维度的长度均为1。

作为例子,下面两个数组的每个维度都是匹配的

复制代码
A      (4d array):  8 x 1 x 6 x 1
B      (3d array):      7 x 1 x 5

B比A少一个维度,所以在做广播时,它会被扩展出一个长度为1的新维度。

作为反例,下面两个数组是不匹配的

复制代码
A      (2d array):      2 x 1
B      (3d array):  8 x 4 x 3 # second from last dimensions mismatched

可以看到,A的第一个维度和B的第二个维度既不相等,也不为1。

3. 扩展。在进行广播的时候,会将对应维度扩展成同样的长度。因为在匹配检测中已经确保长度要么相同要么其中一个长度是1,所以扩展的过程其实就是将数组在该维度下复制多分,知道两个匹配的维度长度相等。

复制代码
A      (4d array):  8 x 1 x 6 x 1
B      (3d array):      7 x 1 x 5
Result (4d array):  8 x 7 x 6 x 5

4. 结果。如果广播成功,则两个数组的运算结果满足

  1. 维度个数为两个矩阵最多的维度数

  2. 每个维度的长度均为两个数组中对应维度最长的那个

只要记住上面4条原则,就不难理解广播是怎么进行的了。

最后需要指出的是,虽然broadcasting可以减少代码量,使得实现看起来更优雅,但是它也并不是没有代价的。尤其是,在计算过程中产生的中间结果可能会占用大量内存。因此,如果运算的数组规模比较大,那么还是老老实实的用循环好了。

相关推荐
好开心啊没烦恼6 小时前
Python 数据分析:numpy,说人话,说说数组维度。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy
GG不是gg1 天前
NumPy-核心函数np.matmul()深入解析
numpy
GG不是gg2 天前
NumPy-核心函数np.dot()深入理解
numpy
好开心啊没烦恼2 天前
Python 数据分析:numpy,抽提,整数数组索引与基本索引扩展(元组传参)。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy·pandas
小高求学之路15 天前
MinIO centos 7 离线(内网) 一键部署安装
python·centos·numpy
NLxxxxX15 天前
爬虫获取数据:selenium的应用
开发语言·爬虫·python·selenium·测试工具·numpy·pandas
沛沛老爹16 天前
NumPy玩转数据科学
人工智能·python·机器学习·numpy·数据科学·多维数组·python库
点云SLAM17 天前
PyTorch 中Tensor常用数据结构(int, list, numpy array等)互相转换和实战示例
数据结构·人工智能·pytorch·算法·list·numpy·tensor
搞IT的放牛娃18 天前
AI人工智能 —— Numpy
人工智能·numpy
摘取一颗天上星️22 天前
机器学习四剑客:Numpy、Pandas、PIL、Matplotlib 完全指南
机器学习·numpy·pandas