Numpy常用方法介绍

数组创建

python 复制代码
np.array()      # 从列表/元组创建数组
np.zeros()      # 创建全0数组
np.ones()       # 创建全1数组
np.empty()      # 创建未初始化数组
np.arange()     # 创建等差数组
np.linspace()   # 创建等间隔数组
np.eye()        # 创建单位矩阵
np.random.rand() # 随机数组

数组操作

python 复制代码
np.shape()      # 数组形状
np.reshape()    # 改变数组形状
np.resize()     # 调整数组大小
np.flatten()    # 展平数组
np.ravel()      # 展平数组(视图)
np.transpose()  # 转置
np.concatenate() # 连接数组
np.split()      # 分割数组
np.vstack()     # 垂直堆叠
np.hstack()     # 水平堆叠

数学运算

python 复制代码
np.sum()        # 求和
np.mean()       # 平均值
np.std()        # 标准差
np.var()        # 方差
np.min()        # 最小值
np.max()        # 最大值
np.argmin()     # 最小值的索引
np.argmax()     # 最大值的索引
np.cumsum()     # 累加
np.cumprod()    # 累乘

线性代数

python 复制代码
np.dot()        # 点积/矩阵乘法
np.matmul()     # 矩阵乘法
np.linalg.inv() # 矩阵求逆
np.linalg.det() # 行列式
np.linalg.eig() # 特征值和特征向量
np.linalg.solve() # 解线性方程组

逻辑运算

python 复制代码
np.where()      # 条件选择
np.any()        # 任意元素为True
np.all()        # 所有元素为True
np.logical_and() # 逻辑与
np.logical_or()  # 逻辑或
np.logical_not() # 逻辑非

统计函数

python 复制代码
np.percentile() # 百分位数
np.median()     # 中位数
np.histogram()  # 直方图
np.bincount()   # 非负整数计数
np.unique()     # 唯一值

三角函数

python 复制代码
np.sin()        # 正弦
np.cos()        # 余弦
np.tan()        # 正切
np.arcsin()     # 反正弦
np.arccos()     # 反余弦
np.arctan()     # 反正切

傅里叶变换

python 复制代码
np.fft.fft()    # 快速傅里叶变换
np.fft.ifft()   # 逆傅里叶变换
np.fft.fft2()   # 二维傅里叶变换

排序和搜索

python 复制代码
np.sort()       # 排序
np.argsort()    # 返回排序索引
np.searchsorted() # 查找插入位置
np.nonzero()    # 非零元素索引

文件操作

python 复制代码
np.save()       # 保存数组到文件
np.load()       # 从文件加载数组
np.savetxt()    # 保存为文本文件
np.loadtxt()    # 从文本文件加载

示例:

python 复制代码
import numpy as np

# 创建数组
arr = np.array([1, 2, 3, 4, 5])

# 常用操作
print(np.mean(arr))      # 平均值: 3.0
print(np.sum(arr))       # 求和: 15
print(np.std(arr))       # 标准差: 1.414

# 矩阵运算
a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6], [7, 8]])
print(np.dot(a, b))      # 矩阵乘法

# 条件筛选
arr = np.array([1, 2, 3, 4, 5])
print(np.where(arr > 3)) # 输出满足条件的索引
相关推荐
七夜zippoe6 小时前
NumPy高级:结构化数组与内存布局优化实战指南
python·架构·numpy·内存·视图
waves浪游2 天前
Ext系列文件系统
linux·服务器·开发语言·c++·numpy
强化试剂瓶3 天前
Silane-PEG8-DBCO,硅烷-聚乙二醇8-二苯并环辛炔技术应用全解析
python·flask·numpy·pyqt·fastapi
Python-AI Xenon4 天前
RHEL / CentOs 7.9 离线升级OpenSSH完整指南
linux·centos·numpy
和小胖11225 天前
Anaconda虚拟环境创建步骤
python·conda·numpy
叫我:松哥7 天前
基于scrapy的网易云音乐数据采集与分析设计实现
python·信息可视化·数据分析·beautifulsoup·numpy·pandas
_Soy_Milk7 天前
【算法工程师】—— Python 数据分析
python·数据分析·numpy·pandas·matplotlib
强化试剂瓶8 天前
Acridinium-Biotin,吖啶生物素偶联物双功能设计的精妙之处
flask·numpy·fastapi·web3.py·tornado
张祥6422889048 天前
误差理论与测量平差基础笔记七
线性代数·机器学习·numpy
七夜zippoe11 天前
NumPy向量化计算实战:从入门到精通的性能优化指南
python·性能优化·架构·numpy·广播机制·ufunc