基于YOLOv8深度学习的智能小麦害虫检测识别系统

**作者简介:**Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作

**主要内容:**Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等

业务范围: 免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路等**。**

收藏点赞不迷路 关注作者有好处

文末获取源码

项目编号:

一,环境介绍

语言环境:Python3.8

数据库:Mysql: mysql5.7

开发技术:YOLOv8深度学习框架+Python+PyQT5

开发工具:IDEA或PyCharm

二,项目简介

摘要:智能小麦害虫检测与识别对于农业领域有着举足轻重的意义。它有助于农民及时了解田间小麦害虫的种类与分布情况,从而做出迅速有效的决策来防治害虫,最小化作物产量损失和质量下降的风险。本文基于YOLOv8深度学习框架,通过633张图片,训练了一个进行智能小麦害虫检测识别的目标检测模型。并基于此模型开发了一款带UI界面的智能小麦害虫检测识别系统,可用于实时检测场景中的小麦害虫类别,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

麦害虫检测与识别对于农业领域有着举足轻重的意义。主要表现在以下几个方面:

它有助于农民及时了解田间小麦害虫的种类与分布情况,从而做出迅速有效的决策来防治害虫,最小化作物产量损失和质量下降的风险。通过精确识别害虫种类,可以采用更为针对性的防控措施,包括选择合适的农药和调整施药量。这样不仅提高了农药的使用效率,同时减少了对环境的污染和对人体的潜在健康风险。

此外,智能小麦害虫检测与识别系统可以实时监控大面积的作物,为精准农业和智能化管理提供数据支撑。它在经济作物健康管理、农业灾害评估、以及农业科学研究等场景中具有广泛应用。比如,在智能农业领域,该系统可以集成到无人机或自动化巡检机器人中,对大面积田地进行高效率的监测,提供大数据支持智能决策系统。在科研领域,研究人员可以利用该系统收集害虫发生和繁殖规律的数据,对害虫防控技术进行研究和优化。

综上所述,智能小麦害虫检测与识别系统对于保障粮食安全、提升农业生产效率、促进使用环境友好型的农业实践以及推进现代农业技术的发展具有非常重要的作用.

软件主要功能

1. 可进行9种小麦害虫的检测与识别,分别为:['英国谷蚜', '绿盲椿象', '鸟樱桃蚜虫', '小麦花蚜', '蓟马', '长腿蜘蛛螨', '小麦百合蓟马', '小麦锯螟', '玉米天蛾'];

2.支持图片、视频及摄像头进行检测,同时支持图片的批量检测

3.界面可实时显示目标位置目标总数置信度用时等信息;

4.支持图片或者视频检测结果保存

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行其主要网络结构如下:

三,系统展示

通过网络上搜集关于不同小麦害虫的各类图片,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含633张图片,其中训练集包含506张图片验证集包含127张图片,部分图像及标注如下图所示。

各损失函数作用说明:

定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;

分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;

动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。本文训练结果如下:

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。[email protected]:表示阈值大于0.5的平均mAP,可以看到本文模型两类目标检测的[email protected]平均值为0.735,结果还是很不错的。

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。[email protected]:表示阈值大于0.5的平均mAP,可以看到本文模型两类目标检测的[email protected]平均值为0.735,结果还是很不错的。

软件初始界面如下图所示:

检测结果界面如下:

四,核心代码展示

python 复制代码
# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':
    # Use the model
    results = model.train(data='datasets/WheatInsectData/data.yaml', epochs=250, batch=4)  # 训练模型
    # 将模型转为onnx格式
    # success = model.export(format='onnx')

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/IP027000305.jpg"

# 加载预训练模型
# conf 0.25 object confidence threshold for detection
# iou 0.7 intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)


# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

五,相关作品展示

基于Java开发、Python开发、PHP开发、C#开发等相关语言开发的实战项目

基于Nodejs、Vue等前端技术开发的前端实战项目

基于微信小程序和安卓APP应用开发的相关作品

基于51单片机等嵌入式物联网开发应用

基于各类算法实现的AI智能应用

基于大数据实现的各类数据管理和推荐系统

相关推荐
xiaocao_10237 分钟前
可以高效记录工作生活琐事的提醒APP工具
人工智能·生活·提醒
无极低码17 分钟前
基于deepseek的智能语音客服【第二讲】后端异步接口调用封装
java·人工智能·deepseek
梓羽玩Python25 分钟前
3天内猛涨2.6k+ Star!LangManus:用自然语言操控全网数据,复杂任务一键执行
人工智能·python·github
Honeysea_7033 分钟前
TensorFlow和Pytorch在功能上的区别以及优势
人工智能·pytorch·tensorflow
点我头像干啥34 分钟前
TensorFlow深度学习实战项目:从入门到精通
人工智能·深度学习·tensorflow
成都纵横智控科技官方账号38 分钟前
高性能边缘计算网关-高算力web组态PLC网关
大数据·人工智能·边缘计算
ZhuBin36543 分钟前
测试Claude3.7 sonnet画蛋白质
人工智能·机器学习·自动化·agi
点我头像干啥1 小时前
视觉Transformer架构的前沿优化技术与高效部署
深度学习·神经网络·计算机视觉
Bigger1 小时前
Tauri(十四)—— Coco AI 到底能干什么?
人工智能·搜索引擎·openai
不去幼儿园1 小时前
【强化学习】Reward Model(奖励模型)详细介绍
人工智能·算法·机器学习·自然语言处理·强化学习