Sympy入门之微积分基本运算

Sympy是一个专注于符号数学计算的数学工具,使得用户可以轻松地进行复杂的符号运算,如求解方程、求导数、积分、级数展开、矩阵运算等。本文,我们将详细讲解Sympy在微积分运算中的应用。

获取方式

python 复制代码
pip install -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple sympy

注:本文所使用python环境为jupyter notebook,所有代码只有在jupyter ipynb环境中才可以正确输出

基本四则运算

对于基本四则运算而言,我们只需要在定义变量后,使用python中的四则运算符对变量进行组合即可实现。

python 复制代码
import sympy as sp
x,y=sp.symbols('x y')
expressions1=x+y**2
expressions2=sp.sqrt(x)+sp.sqrt(y)
#doit()方法用来将值带入后尽可能的保留原式(当表达式中含有根式,超越数(π,e),以及未赋值的变量时)
#evalf()方法用来将值带入计算
result1=sp.Subs(expressions1,(x,y),(sp.pi,sp.E)).doit()#π+e^2
result2=sp.Subs(expressions2,(x,y),(2,y)).doit()#只将x带入,y保留
result3=sp.Subs(expressions1,(x,y),(1,5)).evalf()#计算1^2+5^2
display(result1)
display(result2)
display(result3)

结果:

说明

在许多运算中Sympy都提供了以该运算英文名称为名的一个类与函数,这个类主要用来表示未计算的运算表达式,函数则用来计算值该运算结果下的值。

极限运算

在极限运算中,sympy提供了一个名为 sp.limit()函数可以用来直接求解函数极限。

sp.limit()函数参数详解:

|-----|-----------------------|
| e | 极限表达式,使用定义过的变量书写 |
| z | 极限自变量 |
| z0 | 极限自变量趋于的值 |
| dir | 左极限还是右极限,使用'+',和'-'表示 |

python 复制代码
#极限求解sp.limit()与sp.Limit()
import sympy as sp
'''
sp.limit()函数参数详解:
e:极限表达式,使用定义过的变量和sp.函数名来书写
z:极限自变量
z0:极限自变量趋于的值
dir:左极限还是右极限,用'+','-'表示
'''

'''
sp.Limit()类参数详解:
sp.Limit()类的参数与sp.limit()函数完全一致
二者唯一区别就是一个用来计算结果,一个用来返回表达式
'''

#定义x与y这两个符号变量
x=sp.Symbol('x')
y=sp.Symbol('y')
#极限表达式
expression=(sp.cos(sp.sin(x))-(sp.cos(x)))/(x**4)
result1=sp.limit(e=expression,z=x,z0=0)#result1为极限结果1/6
result2=sp.Limit(e=expression,z=x,z0=0)#result2为极限表示
latex_result1=sp.latex(result1)#转为latex
latex_result2=sp.latex(result2)#转为latex
#使用字符串形式的latex表达式与结果的latex格式字符串连接
#使用jupyter notebook内置的Math与display函数将latex表达式渲染后显示
display(Math(latex_result2))
display(Math(r'\lim_{x\to0}\frac{\cos(sinx)-\cos(x)}{x^4}='+latex_result1))

结果:

当然,对于sp.Limit()类表示的对象,若我们需要求解其极限值,那么只需在其表示的对象后边加一个.doits()方法即可,

微分运算

在sympy中,sp.diff()函数可以用来求解函数的微分,sp.Derivative()类则主要用来表示未计算的微分表达式(当然,我们也可以通过doit()方法进行求解)。

sp.diff()函数与sp.Derivative()类使用方法:

  • sp.diff(fx,(x,n))函数表示对函数表达式fx关于x求n阶导数的表达式。
  • sp.Derivative(fx,(x,n))类则只是表示该函数的微分表达式表示出来。
  • 要想使用sp.Derivative()实现与sp.diff()一样的效果,只需在该对象后多加一个.doit()方法即可。如下方代码中的diff_result2。
python 复制代码
#sp.diff(),sp.Derivative()函数微分求解
import sympy as sp
'''
sp.diff()函数使用方法:
sp.diff(fx,(x,n))表示对函数表达式fx关于x求n阶导数,返回值为微分结果
sp.Derivative()类使用方法:
sp.Derivative(fx,(x,n))表示对函数表达式fx关于x求n阶导数,返回值为微分表达式
'''
#定义x与y这两个符号变量
x,y=sp.symbols('x y')
#极限表达式
fx=sp.ln(1+x)
fxy=sp.ln(x+y)
#保留ln(1+x)5阶导数的表达式
diff_result1=sp.Derivative(fx,x,5)
#计算ln(1+x)关于x的5阶导数并使用doit()方法将Derivative的表达式进行求解
diff_result2=sp.Derivative(fx,x,5).doit()
#计算ln(x+y)关于x的5阶偏导数
diff_result3=sp.diff(fxy,(x,5))
latex_result1=sp.latex(diff_result1)#转为latex
latex_result2=sp.latex(diff_result2)#转为latex
latex_result3=sp.latex(diff_result3)#转为latex
#使用字符串形式的latex表达式与结果的latex格式字符串连接
#使用jupyter notebook内置的Math与display函数将latex表达式渲染后显示
display(Math(latex_result1))
display(Math(r'\frac{d^5ln(1+x)}{dx}='+latex_result2))
display(Math(r'\frac{\partial^5 ln(x+y)}{\partial x}='+latex_result2))

结果:

特别地,当我们想要求解上述导数在某一点处的值,那么只需要对上边的每个result使用subs()方法,将变量替换为数值即可

这里要注意的是,对于sp.Derivative()对象直接使用subs()方法得到的结果是这个:

正如我们前边所说,这就是个表达式....

因此,要想使用sp.Derivative()求解在某一点处的导数值,我们可以先试用doit()运算求解出导数表达式后再使用subs()方法将值带入,即:

对于使用sp.diff()函数的对象而言,我们使用subs()方法后,返回值是n阶导数在该点处的导数值:

当我们带入微分结果的点是不可导点时,比如在x=0处的导数不存在,那么返回值为NaN

泰勒展开(泰勒级数)

当我们想要获得某个函数在某点处的泰勒展开式时,使用sp.series()便可以快速实现这一过程。

sp.series()函数参数详解:

|------|------------------|
| expr | 函数表达式 |
| x | 待展开的函数中的自变量 |
| x0 | 展开点,通常是0,即麦克劳林级数 |
| n | 阶数 |

python 复制代码
#sp.series()泰勒级数
import sympy as sp
'''
sp.series()函数参数详解:
expr:函数表达式
x:待展开的函数中的自变量
x0:展开点,通常是0,即麦克劳林级数
n:阶数
'''
x=sp.symbols('x')
function=sp.sin(x)
Talyorseries1=sp.series(expr=function,x=x,x0=0,n=4)
Talyorseries2=sp.series(expr=function,x=x,x0=2,n=4)
display(Talyorseries1)
display(Talyorseries2)

结果:

积分运算

积分运算包括定积分与不定积分。对于这两种运算,我们都可以使用sp.integrate()函数与sp.Integral()类来进行求解。

sp.integrate()函数用法详解:

  • sp.integrate(fx,x)计算fx关于x的不定积分
  • sp.inegrate(fx,(x,a,b))计算fx在a,b上的定积分
  • sp.integrate(fxy,(x,a,b),(y,c,d))计算xy在abcd区域的二重积分
  • 三重积分同理,按照顺序将变量和积分上下限按照元祖的形式传入即可
python 复制代码
#sp.integrate,sp. Integral求解积分与不定积分                                                                        
import sympy as sp
'''
sp.integrate()函数详解:
sp.integrate(fx,x)计算fx关于x的不定积分
sp.inegrate(fx,(x,a,b))计算fx在a,b上的定积分
sp.integrate(fxy,(x,a,b),(y,c,d))计算xy在abcd区域的二重积分
三重积分同理,按照顺序将变量和积分上下限按照元祖的形式传入即可

控制参数详解:

meijerg:bool类型 如果设置为True则使用meijjergG函数计算积分

conds:控制分段积分条件的显示方式。
'none': 不显示条件。
'separate': 单独显示条件。
'piecewise': 将条件合并到分段函数中。

risch:bool类型 如果设置为True则使用risch方法计算积分。

heurisch:bool类型 如果设置为True,则使用启发式算法计算积分。

manual:bool类型 如果设置为True,则手动计算积分(避免自动简化)。

sp.Integral()类使用方法:
传图
'''
x=sp.symbols('x')#积分变量x
a=sp.symbols('a')#未知参数a
result1=sp.integrate(sp.exp(a*x),x,conds='piecewise')#计算不定积分结果
result2=sp.Integral(sp.exp(a*x),x)#只是返回表达式
result3=sp.integrate(sp.exp(a*x),(x,1,2), conds='piecewise')#计算定积分结果sp.integrate()
result4=sp.Integral(sp.exp(a*x),(x,1,2)).doit()#计算定积分结果 sp.Integral().doit()
display(result1)
display(result2)
display(result3)
display(result4)

结果:

这里需要注意的是,sympy在求解一些不定积分或定积分时,只能用于求解一下难度较低的积分,

技巧性稍多,难度稍大一点或者无法求解的积分将返回该积分表达式。

比如:

这是一个较为经典的区间再现积分,但是使用sp.integrate()函数却无法计算**。**

这里,我手动给出计算过程:

解:令原式=,,三角换元后,

,,

换元后

定积分结果与被积变量无关,那么便有:

总结

以上便是Sympy入门之微积分运算的一些基本操作,接下来我们还将介绍Sympy在其他类型运算中的一些应用。敬请期待!

相关推荐
这里有鱼汤5 分钟前
无需HTML/CSS!用Python零基础打造专业级数据应用——Streamlit入门指南
前端·后端·python
三月樱13 分钟前
通过python实现bilibili缓存视频转为mp4格式
python·音视频
这里有鱼汤18 分钟前
10 分钟搞定一个 Python Web 应用?这不比泡面更香!🍜
python
梓羽玩Python22 分钟前
这个开源神器终结了AI数据整合的噩梦!一键聚合网页、代码、论文到剪贴板!
人工智能·python·github
一个天蝎座 白勺 程序猿32 分钟前
Python(16)Python文件操作终极指南:安全读写与高效处理实践
开发语言·python·安全
天才测试猿41 分钟前
接口测试之postman使用指南
自动化测试·软件测试·python·测试工具·职场和发展·接口测试·postman
databook41 分钟前
Python3.14 即将带来的变化
python
H.ZWei1 小时前
鸿蒙应用开发—鸿蒙app一键安装脚本
python·华为·harmonyos·安装·hdc
三天不学习1 小时前
混合开发部署实战:PyInstaller + .NET 8 + Docker全链路配置
python·docker·容器·.net
noravinsc3 小时前
python提升图片清晰度
开发语言·python