Advanced Math & Math Analysis |02 LimitsLet {xk}\{x_k\}{xk} be a sequence of points in Rn\mathbb{R}^nRn. We say that {xk}\{x_k\}{xk} converges to xxx if for every ε>0\varepsilon > 0ε>0, there exists a positive integer N≥1N \geq 1N≥1 such that for all k≥Nk \geq Nk≥N, the inequality ∣xk−x∣<ε|x_k