基于AOP注解+Redisson实现Cache-Aside缓存模式实战

(2) 缓存更新注解一、场景需求

在高并发系统中,缓存是提升性能的关键组件。而Cache-Aside模式作为最常用的缓存策略之一,要求开发者手动管理缓存与数据库的交互。本文将结合自定义注解与Redisson客户端,实现声明式的缓存管理方案。

二、方案亮点

🚀 零侵入性:通过注解实现缓存逻辑

🔒 完整防护:解决缓存穿透/击穿/雪崩问题

⚡ 双删策略:保障数据库与缓存一致性

🛠️ 逻辑删除:支持数据恢复与审计需求

三、核心实现

  1. 环境准备

Maven依赖

java 复制代码
<dependency>
    <groupId>org.redisson</groupId>
    <artifactId>redisson</artifactId>
    <version>3.23.2</version>
</dependency>
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-aop</artifactId>
</dependency>
  1. 定义注解

(1) 缓存查询注解

java 复制代码
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface CacheableData {
    String key();              // 缓存键(支持SpEL)
    int expire() default 3600; // 过期时间(秒)
    int nullExpire() default 300; // 空值缓存时间
}

(2) 缓存更新注解

java 复制代码
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface CacheUpdateData {
    String key();              // 需删除的缓存键
    boolean logicalDelete() default false; 
}

(3) 分布式锁注解

java 复制代码
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface CacheLock {
    String lockKey();         // 锁的键(SpEL)
    int waitTime() default 3; // 获取锁等待时间(秒)
    int leaseTime() default 10; // 锁持有时间
}
  1. AOP切面实现
java 复制代码
@Aspect
@Component
public class CacheAspect {
    @Autowired
    private RedissonClient redisson;
    private static final String NULL_PLACEHOLDER = "##NULL##";

    // 读操作切面
    @Around("@annotation(cacheable)")
    public Object aroundCacheable(ProceedingJoinPoint joinPoint, 
                                 CacheableData cacheable) throws Throwable {
        // 解析SpEL生成缓存键
        String key = parseKey(cacheable.key(), joinPoint);
        
        // 1. 检查缓存
        RBucket<Object> bucket = redisson.getBucket(key);
        Object cachedValue = bucket.get();
        
        if (cachedValue != null) {
            if (NULL_PLACEHOLDER.equals(cachedValue)) return null;
            if (isLogicalDeleted(cachedValue)) return null;
            return cachedValue;
        }
        
        // 2. 执行原方法(查询数据库)
        Object dbResult = joinPoint.proceed();
        
        // 3. 回写缓存
        if (dbResult == null) {
            bucket.set(NULL_PLACEHOLDER, cacheable.nullExpire(), TimeUnit.SECONDS);
        } else {
            bucket.set(dbResult, cacheable.expire(), TimeUnit.SECONDS);
        }
        return dbResult;
    }

    // 更新操作切面(带双删)
    @Around("@annotation(cacheUpdate)")
    public Object aroundUpdate(ProceedingJoinPoint joinPoint, 
                              CacheUpdateData cacheUpdate) throws Throwable {
        String key = parseKey(cacheUpdate.key(), joinPoint);
        
        // 第一次删除
        redisson.getBucket(key).delete();
        
        // 执行数据库操作
        Object result = joinPoint.proceed();
        
        // 延迟双删(1秒后二次删除)
        redisson.getDelayedQueue(redisson.getQueue("cache:delete:queue"))
               .offer(key, 1, TimeUnit.SECONDS);
        
        // 处理逻辑删除
        if (cacheUpdate.logicalDelete()) {
            markLogicalDelete(key);
        }
        return result;
    }
    
    // 其他辅助方法省略,完整代码见文末Github链接
}
  1. 业务层使用示例
java 复制代码
@Service
public class UserService {
    
    // 带防击穿的查询方法
    @CacheableData(key = "user:#userId", expire = 7200)
    @CacheLock(lockKey = "user_lock:#userId")
    public User getUserById(Long userId) {
        return userDao.findById(userId);
    }

    // 更新用户信息
    @CacheUpdateData(key = "user:#user.id")
    public void updateUser(User user) {
        userDao.update(user);
    }

    // 逻辑删除用户
    @CacheUpdateData(key = "user:#id", logicalDelete = true)
    public void deleteUser(Long id) {
        userDao.logicalDelete(id);
    }
}

四、方案总结

七:踩坑指南

  1. 序列化问题:推荐使用JSON序列化,避免Java序列化的版本兼容问题
  2. 锁超时设置:分布式锁的leaseTime应大于业务执行时间
  3. 内存泄漏:逻辑删除数据必须设置TTL
  4. SpEL解析:复杂表达式建议使用Spring的ExpressionParse
相关推荐
梦里不知身是客114 小时前
redis的缓存击穿原因
redis·缓存·bootstrap
GGBondlctrl6 小时前
【Redis】从单机架构到分布式,回溯架构的成长设计美学
分布式·缓存·架构·微服务架构·单机架构
不穿格子的程序员7 小时前
Redis篇4——Redis深度剖析:内存淘汰策略与缓存的三大“天坑”
数据库·redis·缓存·雪崩·内存淘汰策略
想搞艺术的程序员11 小时前
Go语言环形队列:原理剖析、编程技巧与核心优势
后端·缓存·golang
T1ssy11 小时前
深入解析Redis三大缓存问题:穿透、击穿、雪崩及解决方案
数据库·redis·缓存
木易 士心11 小时前
NestJS 核心揭秘:InstanceWrapper 的艺术与前端缓存新思路
前端·缓存
Haooog11 小时前
Redis面试题(不定时更新)
数据库·redis·缓存·面试
孙同学_11 小时前
【Linux篇】线程互斥、同步与线程池设计:原理与实践
数据库·redis·缓存
albert-einstein11 小时前
Nginx越界读取缓存漏洞CVE-2017-7529(参考peiqi文库以及gpt)
gpt·nginx·缓存
大佐不会说日语~12 小时前
Spring AI Alibaba 对话记忆丢失问题:Redis 缓存过期后如何恢复 AI 上下文
java·人工智能·spring boot·redis·spring·缓存