图像多分类的人工智能

当涉及到图像多分类任务,通常会使用深度学习模型,如卷积神经网络(Convolutional Neural Network,CNN)。以下是一个使用Python编程语言和TensorFlow库来构建一个简单的图像多分类模型的例子:

python 复制代码
# 导入所需的库
import tensorflow as tf
from tensorflow.keras import layers, models, datasets
import matplotlib.pyplot as plt

# 加载示例数据集(这里使用Fashion-MNIST数据集)
(train_images, train_labels), (test_images, test_labels) = datasets.fashion_mnist.load_data()

# 数据预处理
train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28, 28, 1))
test_images = test_images.astype('float32') / 255

# 构建CNN模型
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')
])

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
model.fit(train_images, train_labels, epochs=5)

# 评估模型
test_loss, test_accuracy = model.evaluate(test_images, test_labels)
print('测试集准确率:', test_accuracy)

# 预测新图像
predictions = model.predict(test_images)
predicted_labels = [np.argmax(prediction) for prediction in predictions]

# 可视化预测结果
plt.figure(figsize=(10, 10))
for i in range(25):
    plt.subplot(5, 5, i+1)
    plt.imshow(test_images[i].reshape(28, 28), cmap=plt.cm.binary)
    plt.xlabel(f'预测值: {predicted_labels[i]}, 真实值: {test_labels[i]}')
    plt.xticks([])
    plt.yticks([])
plt.show()
 

在这个示例中,我们使用Fashion-MNIST数据集来构建CNN模型进行图像多分类任务。首先,我们加载数据集并进行简单的预处理。然后,我们构建了一个包含卷积层、池化层和全连接层的CNN模型。接着,我们编译模型并训练模型。最后,我们评估模型在测试集上的表现,并展示了一些测试图像的预测结果。

请注意,实际的图像多分类任务可能会更复杂,可能需要更多的数据处理、模型调参以及调整结构等。这里的示例只是一个简单的入门例子。

相关推荐
数据科学作家2 小时前
学数据分析必囤!数据分析必看!清华社9本书覆盖Stata/SPSS/Python全阶段学习路径
人工智能·python·机器学习·数据分析·统计·stata·spss
CV缝合救星3 小时前
【Arxiv 2025 预发行论文】重磅突破!STAR-DSSA 模块横空出世:显著性+拓扑双重加持,小目标、大场景统统拿下!
人工智能·深度学习·计算机视觉·目标跟踪·即插即用模块
TDengine (老段)5 小时前
从 ETL 到 Agentic AI:工业数据管理变革与 TDengine IDMP 的治理之道
数据库·数据仓库·人工智能·物联网·时序数据库·etl·tdengine
蓝桉8026 小时前
如何进行神经网络的模型训练(视频代码中的知识点记录)
人工智能·深度学习·神经网络
星期天要睡觉6 小时前
深度学习——数据增强(Data Augmentation)
人工智能·深度学习
南山二毛8 小时前
机器人控制器开发(导航算法——导航栈关联坐标系)
人工智能·架构·机器人
大数据张老师8 小时前
【案例】AI语音识别系统的标注分区策略
人工智能·系统架构·语音识别·架构设计·后端架构
xz2024102****8 小时前
吴恩达机器学习合集
人工智能·机器学习
anneCoder8 小时前
AI大模型应用研发工程师面试知识准备目录
人工智能·深度学习·机器学习
骑驴看星星a8 小时前
没有深度学习
人工智能·深度学习