Occ3D: A Large-Scale 3D Occupancy Prediction Benchmark for Autonomous Driving

Occ3D

https://tsinghua-mars-lab.github.io/Occ3D/

Occ3D: A Large-Scale 3D Occupancy Prediction Benchmark for Autonomous Driving

重点关注其数据集

提出了一个更为通用的Occ数据生成方式,可以用于生成不同场景下的高密度、所见即所得的Occ数据。主要包括三个步骤:1)体素稠密化,2)遮挡推理,3)图片引导refine

Method

分别基于nuscenes和waymo数据集生成Occ数据集,具体参数如图:

除了原有数据集中分割的类别,还增加了通用类别(general object,GO)的标注。

其中,nuscenes数据集的标注范围为[-40m, -40m, -1m, 40m, 40m, 5.4m]; waymo的标注范围为[-80m, -80m, -1m, 80m, 80m, 5.4m]
Dataset Construction Pipeline

完整的数据生成流程如图所示:

由于图像缺乏可靠的深度和尺度信息,因此仅利用图像进行Occ真值生成是不可能的。因此本文利用点云和其分割结果重建高质量的Occ真值,并解决了几个关键问题:1) 点云稀疏性问题,2) 遮挡问题,3) 点云与图像之间的对齐问题。

  • Voxel Densification
  1. 关键帧叠帧,并对动/静态物体分开处理
  2. 引入非关键帧,利用KNN分配对应标签
  3. 表面重建
    对于非地面目标,使用VDBFusion进行表面重建;但对于地面目标,VDBFusion 会因光线角度过小导致 TSDF值不正确而失败。因此,本文将地面划分为多个区域,利用区域内的点来拟合表面网格进行泊松重建。
    重建网格后,进行密集点采样,并再次利用KNN为采样点分配标签。
  • Occlusion Reasoning for Visibility Mask
    本文提出了遮挡推理,并分别应用于雷达和相机视角,从而生成可见性掩码。

由于点云的稀疏性,很容易将空洞误以为是"free",因此本文采用叠帧数据下的射线广播的方法,如图a所示,如果该点位置反射了来自雷达的射线,则定义为"occupied",若an该点被射线o穿透,则定义为"free",除此之外,则定义为"unobserved"。

我们将每个被占据的体素中心与摄像机原点连接起来,从而形成一条射线。沿着每条射线,我们将第一个被占据的体素设为 "observed",其余的设为"unobserved"。相机射线未扫描到的任何体素也会被设置为 "unobserved"。

  • Image-guided Voxel Refinement
    由于雷达噪声和位姿偏移的影响,点云数据对于物体的观测会比实际物理尺寸要大,因此本文引入了图像引导的体素细化方法对结果进行细化和去噪。

同样采用射线广播的方法,但这次我们使用的是相机射线,并使用相机图像作为参考。

Experiment




相关推荐
渲吧云渲染13 小时前
3D 技术赋能制造企业精准高效装配生产
3d·数字化装配·制造业转型
用什么都重名13 小时前
DeepSeek-OCR 深度解析
人工智能·ocr·deepseek-ocr
河南骏13 小时前
RAG_检索进阶
人工智能·深度学习
灯火不休时14 小时前
95%准确率!CNN交通标志识别系统开源
人工智能·python·深度学习·神经网络·cnn·tensorflow
mit6.82415 小时前
[手机AI开发sdk] Aid_code IDE | PC浏览器同步访问
ide·人工智能·智能手机
deephub15 小时前
FastMCP 入门:用 Python 快速搭建 MCP 服务器接入 LLM
服务器·人工智能·python·大语言模型·mcp
番石榴AI15 小时前
基于机器学习优化的主图选择方法(酒店,景点,餐厅等APP上的主图展示推荐)
图像处理·人工智能·python·机器学习
国产化创客16 小时前
基于AI大模型智能硬件--小智AI项目PC端部署测试
人工智能
海边夕阳200616 小时前
【每天一个AI小知识】:什么是零样本学习?
人工智能·经验分享·学习
平凡而伟大(心之所向)16 小时前
云架构设计与实践:从基础到未来趋势
人工智能·阿里云·系统架构·安全架构